

 [image: image]

 [image: image]

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

©2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBN: 978-1-118-53164-8
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013933932

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

 TABLE OF CONTENTS

Introduction

Chapter 1: The ABC of Programming

Chapter 2: Basic JavaScript Instructions

Chapter 3: Functions, Methods & Objects

Chapter 4: Decisions & Loops

Chapter 5: Document Object Model

Chapter 6: Events

Chapter 7: jQuery

Chapter 8: Ajax & JSON

Chapter 9: APIs

Chapter 10: Error Handling & Debugging

Chapter 11: Content Panels

Chapter 12: Filtering, Searching & Sorting

Chapter 13: Form Enhancement & Validation

Index

[image: image]

 CREDITS

For John Wiley & Sons, Inc.

Executive Editor
Carol Long

Project Editor
Kevin Kent

Production Editor
Daniel Scribner

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Marketing Manager
Lorna Mein

Business Manager
Amy Knies

Vice President and Executive Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

For Wagon Ltd.

Author
Jon Duckett

Co-Authors
Jack Moore
(Chapters 11 & 12)

Gilles Ruppert
(Chapter 13)

Technical Review
Mathias Bynens

Review Team
Chris Ullman
David Lean
Harrison Thrift
Jay Bursky
Richard Eskins
Scott Robin
Stachu Korick

Thank you
Annette Loudon
Michael Tomko
Michael Vella Zarb
Pam Coca
Rishabh Pugalia

Cover Design
Emme Stone

Design
Emme Stone
Jon Duckett

Photography
John Stewardson
johnstewardson.com

Illustration
Matthew Cencich
(Hotel in Chapter 3)

Emme Stone
(Teacher in Chapter 4)

Additional Photography

Electronics in Chapters 8 & 9:
Aaron Nielsen
Arkadiusz Jan Sikorski
Matt Mets
Mirsad Dedović
Steve Lodefink

javascriptbook.com/credits

 INTRODUCTION

This book explains how JavaScript can be used in browsers to make websites more interactive, interesting, and user-friendly. You will also learn about jQuery because it makes writing JavaScript a lot easier.

To get the most out of this book, you will need to know how to build web pages using HTML and CSS. Beyond that, no prior experience with programming is necessary. Learning to program with JavaScript involves:

1

Understanding some basic programming concepts and the terms that JavaScript programmers use to describe them.

2

Learning the language itself, and, like all languages, you need to know its vocabulary and how to structure your sentences.

3

Becoming familiar with how it is applied by looking at examples of how JavaScript is commonly used in websites today.

The only equipment you need to use this book are a computer with a modern web browser installed, and your favorite code editor, (e.g., Notepad, TextEdit, Sublime Text, or Coda).

[image: image]

Introduction pages come at the beginning of each chapter. They introduce the key topics you will learn about.

[image: image]

Background pages appear on white. They explain the context of the topics covered that are discussed in each chapter.

[image: image]

Example pages bring together the topics you have learned in that chapter and demonstrate how they can be applied.

[image: image]

Reference pages introduce key pieces of JavaScript. HTML code is shown in blue, CSS code in pink, and JavaScript in green.

[image: image]

Diagram and infographics pages are shown on a dark background. They provide a simple, visual reference to topics discussed.

[image: image]

Summary pages come at the end of each chapter. They remind you of the key topics that were covered in each chapter.

[image: image]

[image: image]

EXAMPLES OF JAVASCRIPT IN THE BROWSER

Being able to change the content of an HTML page while it is loaded in the browser is very powerful. The examples below rely on the ability to:

Access the content of the page
Modify the content of the page
Program rules or instructions the browser can follow
React to events triggered by the user or browser

[image: image]

SLIDESHOWS

Shown in Chapter 11

Slideshows can display a number of different images (or other HTML content) within the same space on a given page. They can play automatically as a sequence, or users can click through the slides manually. They allow more content to be displayed within a limited amount of space.

React: Script triggered when the page loads
Access: Get each slide from the slideshow
Modify: Only show the first slide (hide others)
Program: Set a timer: when to show next slide
Modify: Change which slide is shown
React: When user clicks button for different slide
Program: Determine which slide to show
Modify: Show the requested slide

[image: image]

FORMS

Shown in Chapter 13

Validating forms (checking whether they have been filled in correctly) is important when information is supplied by users. JavaScript lets you alert the user if mistakes have been made. It can also perform sophisticated calculations based on any data entered and reveal the results to the user.

React: User presses the submit button when they have entered their name
Access: Get value from form field
Program: Check that the name is long enough
Modify: Show a warning message if the name is not long enough

The examples on these two pages give you a taste of what JavaScript can do within a web page, and of the techniques you will be learning throughout this book.

[image: image]

RELOAD PART OF PAGE

Shown in Chapter 8

You might not want to force visitors to reload the content of an entire web page, particularly if you only need to refresh a small portion of a page. Just reloading a section of the page can make a site feel like it is faster to load and more like an application.

React: Script triggered when user clicks on link
Access: The link that they clicked on
Program: Load the new content that was requested from that link
Access: Find the element to replace in the page
Modify: Replace that content with the new content

In the coming chapters, you will learn how and when to access or modify content, add programming rules, and react to events.

[image: image]

FILTERING DATA

Shown in Chapter 12

If you have a lot of information to display on a page, you can help users find information they need by providing filters. Here, buttons are generated using data in the attributes of the HTML elements. When the user clicks on one of the buttons, they are only shown the images with that keyword.

React: Script triggered when page loads
Program: Collect keywords from images
Program: Turn the keywords into buttons the user can click on
React: User clicks on one of the buttons
Program: Find the relevant subset of images that should be shown
Modify: Show the subset of images that use that tag

THE STRUCTURE OF THIS BOOK

In order to teach you JavaScript, this book is divided into two sections:

CORE CONCEPTS

The first nine chapters introduce you to the basics of programming and the JavaScript language. Along the way you will learn how it is used to create more engaging, interactive, and usable websites.

Chapter 1 looks at some key concepts in computer programming, showing you how computers create models of the world using data, and how JavaScript is used to change the contents of an HTML page.

Chapters 2–4 cover the basics of the JavaScript language.

Chapter 5 explains how the Document Object Model (DOM) lets you access and change a document's contents while it is loaded into the browser.

Chapter 6 discusses how events can be used to trigger code.

Chapter 7 shows you how jQuery can make the process of writing scripts faster and easier.

Chapter 8 introduces you to Ajax, a set of techniques that allow you to just change part of a web page without reloading the entire page.

Chapter 9 covers Application Programming Interfaces (APIs), including new APIs that are part of HTML5 and those of sites like Google Maps.

PRACTICAL APPLICATIONS

By this point you will already have seen many examples of how JavaScript is used on popular websites. This section brings together all of the techniques you have learned so far, to give you practical demonstrations of how JavaScript is used by professional developers. Not only will you see a selection of in-depth examples, you will also learn more about the process of designing and writing scripts from scratch.

Chapter 10 deals with error-handling and debugging, and explains more about how JavaScript is processed.

Chapter 11 shows you techniques for creating content panels such as sliders, modal windows, tabbed panels, and accordions.

Chapter 12 demonstrates several techniques for filtering and sorting data. This includes filtering a gallery of images, and re-ordering the rows of a table by clicking on the column headings.

Chapter 13 deals with form enhancements and how to validate form entries.

Unless you are already a confident programmer, you will probably find it helpful to read the book from start to finish the first time. However, once you have grasped the basics, we hope it will continue to be a helpful reference as you create your own scripts.

HTML & CSS: A QUICK REFRESHER

Before looking at JavaScript, let's clarify some HTML & CSS terms. Note how HTML attributes and CSS properties use name/value pairs.

HTML ELEMENTS

HTML elements are added to the content of a page to describe its structure. An element consists of the opening and closing tags, plus its content.

Tags usually come in pairs with an opening tag and a closing tag. There are a few empty elements with no content, (e.g.,). They have one self-closing tag.

Opening tags can carry attributes, which tell us more about that element. Attributes have a name and a value. The value is usually given in quotes.

[image: image]

CSS RULES

CSS uses rules to indicate how the contents of one or more elements should be displayed in the browser. Each rule has a selector and a declaration block.

The CSS selector indicates which element(s) the rule applies to. The declaration block contains rules that indicate how those elements should appear.

Each declaration in the declaration block has a property (the aspect you want to control), and a value, which is the setting for that property.

[image: image]

BROWSER SUPPORT

Some early examples in this book do not work with Internet Explorer 8 and earlier (but alternative code samples that work in IE8 are available to download from http://javascriptbook.com). We explain techniques for dealing with older browsers in later chapters.

Each version of a web browser adds new features. Often these new features make tasks easier, or are considered better, than using older techniques.

But, website visitors do not always keep up with the latest browser releases, so website developers cannot always rely upon the latest technologies.

As you will see, there are many inconsistencies between browsers that affect JavaScript developers. jQuery will help you deal with cross-browser inconsistencies (it is one of the major reasons why jQuery rapidly gained popularity amongst web developers). But, before you learn jQuery, it helps to know what it is helping you to achieve.

To make JavaScript easier to learn, the first few chapters use some features of JavaScript that are not supported in IE8. But:

	You will learn how to deal with IE8 and older browsers in later chapters (because we know that many clients expect sites to work in IE8). It just requires knowledge of some extra code or requires you to be aware of some additional issues.

	Online, you will find alternatives available for each example that does not work in IE8. But please check the comments in those code samples to make sure you know about the about issues involved in using them.

 1

THE ABC OF PROGRAMMING

Before you learn how to read and write the JavaScript language itself, you need to become familiar with some key concepts in computer programming. They will be covered in three sections:

A

What is a script and how do I create one?

B

How do computers fit in with the world around them?

C

How do I write a script for a web page?

Once you have learned the basics, the following chapters will show how the JavaScript language can be used to tell browsers what you want them to do.

1/a

WHAT IS A SCRIPT AND HOW DO I CREATE ONE?

A SCRIPT IS A SERIES OF INSTRUCTIONS

A script is a series of instructions that a computer can follow to achieve a goal. You could compare scripts to any of the following:

RECIPES

By following the instructions in a recipe, one-by-one in the order set out, cooks can create a dish they have never made before.

Some scripts are simple and only deal with one individual scenario, like a simple recipe for a basic dish. Other scripts can perform many tasks, like a recipe for a complicated three-course meal.

Another similarity is that, if you are new to cooking or programming, there is a lot of new terminology to learn.

[image: images]

HANDBOOKS

Large companies often provide handbooks for new employees that contain procedures to follow in certain situations.

For example, hotel handbooks may contain steps to follow in different scenarios such as when a guest checks in, when a room needs to be tidied, when a fire alarm goes off, and so forth.

In any of these scenarios, the employees need to follow only the steps for that one type of event. (You would not want someone going through every single step in the entire handbook while you were waiting to check in.) Similarly, in a complex script, the browser might use only a subset of the code available at any given time.

MANUALS

Mechanics often refer to car repair manuals when servicing models they are not familiar with. These manuals contain a series of tests to check the key functions of the car are working, along with details of how to fix any issues that arise.

For example, there might be details about how to test the brakes. If they pass this test, the mechanic can then go on to the next test without needing to fix the brakes. But, if they fail, the mechanic will need to follow the instructions to repair them.

The mechanic can then go back and test the brakes again to see if the problem is fixed. If the brakes now pass the test, the mechanic knows they are fixed and can move onto the next test.

Similarly, scripts can allow the browser to check the current situation and only perform a set of steps if that action is appropriate.

[image: images]

WRITING A SCRIPT

To write a script, you need to first state your goal and then list the tasks that need to be completed in order to achieve it.

[image: images]

Humans can achieve complex goals without thinking about them too much, for example you might be able to drive a car, cook breakfast, or send an email without a set of detailed instructions. But the first time we do these things they can seem daunting. Therefore, when learning a new skill, we often break it down into smaller tasks, and learn one of these at a time. With experience these individual tasks grow familiar and seem simpler.

Some of the scripts you will be reading or writing when you have finished this book will be quite complicated and might look intimidating at first. However, a script is just a series of short instructions, each of which is performed in order to solve the problem in hand. This is why creating a script is like writing a recipe or manual that allows a computer to solve a puzzle one step at a time.

It is worth noting, however, that a computer doesn't learn how to perform tasks like you or I might; it needs to follow instructions every time it performs the task. So a program must give the computer enough detail to perform the task as if every time were its first time.

Start with the big picture of what you want to achieve, and break that down into smaller steps.

1: DEFINE THE GOAL

First, you need to define the task you want to achieve. You can think of this as a puzzle for the computer to solve.

2: DESIGN THE SCRIPT

To design a script you split the goal out into a series of tasks that are going to be involved in solving this puzzle. This can be represented using a flowchart.

You can then write down individual steps that the computer needs to perform in order to complete each individual task (and any information it needs to perform the task), rather like writing a recipe that it can follow.

3: CODE EACH STEP

Each of the steps needs to be written in a programming language that the computer understands. In our case, this is JavaScript.

As tempting as it can be to start coding straight away, it pays to spend time designing your script before you start writing it.

DESIGNING A SCRIPT: TASKS

Once you know the goal of your script, you can work out the individual tasks needed to achieve it. This high-level view of the tasks can be represented using a flowchart.

DESIGNING A SCRIPT: STEPS

Each individual task may be broken down into a sequence of steps. When you are ready to code the script, these steps can then be translated into individual lines of code.

[image: images]

As you will see on the next page, the steps that a computer needs to follow in order to perform a task are often very different from those that you or I might take.

FROM STEPS TO CODE

Every step for every task shown in a flowchart needs to be written in a language the computer can understand and follow.

[image: images]

In this book, we are focussing on the JavaScript language and how it is used in web browsers.

Just like learning any new language, you need to get to grips with the:

	Vocabulary: The words that computers understand

	Syntax: How you put those words together to create instructions computers can follow

Along with learning the language itself, if you are new to programming, you will also need to learn how a computer achieves different types of goals using a programmatic approach to problem-solving.

Computers are very logical and obedient. They need to be told every detail of what they are expected to do, and they will do it without question. Because they need different types of instructions compared to you or I, everyone who learns to program makes lots of mistakes at the start. Don't be disheartened; in Chapter 10 you will see several ways to discover what might have gone wrong - programmers call this debugging.

You need to learn to “think” like a computer because they solve tasks in different ways than you or I might approach them.

[image: images]

Computers solve problems programmatically; they follow series of instructions, one after another. The type of instructions they need are often different to the type of instructions you might give to another human. Therefore, throughout the book you will not only learn the vocabulary and syntax that JavaScript uses, but you will also learn how to write instructions that computers can follow.

For example, when you look at the picture on the left how do you tell which person is the tallest? A computer would need explicit, step-by-step instructions, such as:

1. Find the height of the first person

2. Assume he or she is the “tallest person”

3. Look at the height of the remaining people one-by-one and compare their height to the “tallest person” you have found so far

4. At each step, if you find someone whose height is greater than the current “tallest person”, he or she becomes the new “tallest person”

5. Once you have checked all the people, tell me which one is the tallest

So the computer needs to look at each person in turn, and for each one it performs a test (”Are they taller than the current tallest person?”). Once it has done this for each person it can give its answer.

DEFINING A GOAL & DESIGNING THE SCRIPT

Consider how you might approach a different type of script. This example calculates the cost of a name plaque. Customers are charged by the letter.

[image: images]

The first thing you should do is detail your goals for the script (what you want it to achieve):

Customers can have a name added to a plaque; each letter costs $5. When a user enters a name, show them how much it will cost.

Next, break it into a series of tasks that have to be performed in order to achieve the goals:

1. The script is triggered when the button is clicked.

2. It collects the name entered into the form field.

3. It checks that the user has entered a value.

4. If the user has not entered anything, a message will appear telling them to enter a name.

5. If a name has been entered, calculate the cost of the sign by multiplying the number of letters by the cost per letter.

6. Show how much the plaque costs.

(These numbers correspond with the flowchart on the right-hand page.)

SKETCHING OUT THE TASKS IN A FLOWCHART

Often scripts will need to perform different tasks in different situations. You can use flowcharts to work out how the tasks fit together. The flowcharts show the paths between each step.

[image: images]

Arrows show how the script moves from one task to the next. The different shapes represent different types of tasks. In some places there are decisions which cause the code to follow different paths.

You will learn how to turn this example into code in Chapter 2. You will also see many more examples of different flowcharts throughout the book, and you will meet code that helps you deal with each of these types of situations.

Some experienced programmers use more complex diagram styles that are specifically designed to represent code - however, they have a steeper learning curve. These informal flowcharts will help you understand how scripts work while you are in the process of learning the language.

[image: images]

SUMMARY

THE ABC OF PROGRAMMING

A: What is a script and how do I create one?

	A script is a series of instructions that the computer can follow in order to achieve a goal.

	Each time the script runs, it might only use a subset of all the instructions.

	Computers approach tasks in a different way than humans, so your instructions must let the computer solve the task programmatically.

	To approach writing a script, break down your goal into a series of tasks and then work out each step needed to complete that task (a flowchart can help).

1/b

HOW DO COMPUTERS FIT IN WITH THE WORLD AROUND THEM?

COMPUTERS CREATE MODELS OF THE WORLD USING DATA

Here is a model of a hotel, along with some model trees, model people, and model cars. To a human, it is clear what kind of real-world object each one represents.

[image: images]

A computer has no predefined concept of what a hotel or car is. It does not know what they are used for. Your laptop or phone will not have a favorite brand of car, nor will it know what star rating your hotel is.

So how do we use computers to create hotel booking apps, or video games where players can race a car? The answer is that programmers create a very different kind of model, especially for computers.

Programmers make these models using data. That is not as strange or as scary as it sounds because the data is all the computer needs in order to follow the instructions you give it to carry out its tasks.

OBJECTS & PROPERTIES

If you could not see the picture of the hotel and cars, the data in the information boxes alone would still tell you a lot about this scene.

OBJECTS (THINGS)

In computer programming, each physical thing in the world can be represented as an object. There are two different types of objects here: a hotel and a car.

Programmers might say that there is one instance of the hotel object, and two instances of the car object.

Each object can have its own:

	Properties

	Events

	Methods

Together they create a working model of that object.

PROPERTIES (CHARACTERISTICS)

Both of the cars share common characteristics. In fact, all cars have a make, a color, and engine size. You could even determine their current speed. Programmers call these characteristics the properties of an object.

Each property has a name and a value, and each of these name/value pairs tells you something about each individual instance of the object.

The most obvious property of this hotel is its name. The value for that property is Quay. You can tell the number of rooms the hotel has by looking at the value next to the rooms property.

The idea of name/value pairs is used in both HTML and CSS. In HTML, an attribute is like a property; different attributes have different names, and each attribute can have a value. Similarly, in CSS you can change the color of a heading by creating a rule that gives the color property a specific value, or you can change the typeface it is written in by giving the font-family property a specific value. Name/value pairs are used a lot in programming.

HOTEL OBJECT

The hotel object uses property names and values to tell you about this particular hotel, such as the hotel's name, its rating, the number of rooms it has, and how many of these are booked. You can also tell whether or not this hotel has certain facilities.

CAR OBJECTS

The car objects both share the same properties, but each one has different values for those properties. They tell you the make of car, what speed each car is currently traveling at, what color it is, and what type of fuel it requires.

[image: images]

EVENTS

In the real world, people interact with objects. These interactions can change the values of the properties in these objects.

WHAT IS AN EVENT?

There are common ways in which people interact with each type of object. For example, in a car a driver will typically use at least two pedals. The car has been designed to respond differently when the driver interacts with each of the different pedals:

	The accelerator makes the car go faster

	The brake slows it down

Similarly, programs are designed to do different things when users interact with the computer in different ways. For example, clicking on a contact link on a web page could bring up a contact form, and entering text into a search box may automatically trigger the search functionality.

An event is the computer's way of sticking up its hand to say, “Hey, this just happened!”

WHAT DOES AN EVENT DO?

Programmers choose which events they respond to. When a specific event happens, that event can be used to trigger a specific section of the code.

Scripts often use different events to trigger different types of functionality.

So a script will state which events the programmer wants to respond to, and what part of the script should be run when each of those events occur.

HOTEL OBJECT

A hotel will regularly have bookings for rooms. Each time a room is reserved, an event called book can be used to trigger code that will increase the value of the bookings property. Likewise, a cancel event can trigger code that decreases the value of the bookings property.

CAR OBJECTS

A driver will accelerate and brake throughout any car journey. An accelerate event can trigger code to increase the value of the currentSpeed property and a brake event can trigger code to decrease it. You will learn about the code that responds to the events and changes these properties on the next page.

[image: images]

METHODS

Methods represent things people need to do with objects. They can retrieve or update the values of an object's properties.

WHAT IS A METHOD?

Methods typically represent how people (or other things) interact with an object in the real world.

They are like questions and instructions that:

	Tell you something about that object (using information stored in its properties)

	Change the value of one or more of that object's properties

WHAT DOES A METHOD DO?

The code for a method can contain lots of instructions that together represent one task.

When you use a method, you do not always need to know how it achieves its task; you just need to know how to ask the question and how to interpret any answers it gives you.

HOTEL OBJECT

Hotels will commonly be asked if any rooms are free. To answer this question, a method can be written that subtracts the number of bookings from the total number of rooms. Methods can also be used to increase and decrease the value of the bookings property when rooms are booked or cancelled.

CAR OBJECTS

The value of the currentSpeed property needs to go up and down as the driver accelerates and brakes. The code to increase or decrease the value of the currentSpeed property could be written in a method, and that method could be called changeSpeed().

[image: images]

PUTTING IT ALL TOGETHER

Computers use data to create models of things in the real world. The events, methods, and properties of an object all relate to each other: Events can trigger methods, and methods can retrieve or update an object's properties.

[image: images]

HOTEL OBJECT

1. When a reservation is made, the book event fires.

2. The book event triggers the makeBooking() method, which increases the value of the bookings property.

3. The value of the bookings property is changed to reflect how many rooms the hotel has available.

CAR OBJECTS

1. As a driver speeds up, the accelerate event fires.

2. The accelerate event calls the changeSpeed() method, which in turn increases the value of the currentSpeed property.

3. The value of the currentSpeed property reflects how fast the car is traveling.

WEB BROWSERS ARE PROGRAMS BUILT USING OBJECTS

You have seen how data can be used to create a model of a hotel or a car. Web browsers create similar models of the web page they are showing and of the browser window that the page is being shown in.

WINDOW OBJECT

On the right-hand page you can see a model of a computer with a browser open on the screen.

The browser represents each window or tab using a window object. The location property of the window object will tell you the URL of the current page.

DOCUMENT OBJECT

The current web page loaded into each window is modelled using a document object.

The title property of the document object tells you what is between the opening <title> and closing </title> tag for that web page, and the lastModified property of the document object tells you the date this page was last updated.

[image: images]

THE DOCUMENT OBJECT REPRESENTS AN HTML PAGE

Using the document object, you can access and change what content users see on the page and respond to how they interact with it.

Like other objects that represent real-world things, the document object has:

PROPERTIES

Properties describe characteristics of the current web page (such as the title of the page).

METHODS

Methods perform tasks associated with the document currently loaded in the browser (such as getting information from a specified element or adding new content).

EVENTS

You can respond to events, such as a user clicking or tapping on an element.

Because all major web browsers implement the document object in the same way, the people who create the browsers have already:

	Implemented properties that you can access to find out about the current page in the browser

	Written methods that achieve some common tasks that you are likely to want to do with an HTML page

So you will be learning how to work with this object. In fact, the document object is just one of a set of objects that all major browsers support. When the browser creates a model of a web page, it not only creates a document object, but it also creates a new object for each element on the page. Together these objects are described in the Document Object Model, which you will meet in Chapter 5.

[image: images]

HOW A BROWSER SEES A WEB PAGE

In order to understand how you can change the content of an HTML page using JavaScript, you need to know how a browser interprets the HTML code and applies styling to it.

1: RECEIVE A PAGE AS HTML CODE

Each page on a website can be seen as a separate document. So, the web consists of many sites, each made up of one or more documents.

2: CREATE A MODEL OF THE PAGE AND STORE IT IN MEMORY

The model shown on the right hand page is a representation of one very basic page. Its structure is reminiscent of a family tree. At the top of the model is a document object, which represents the whole document.

Beneath the document object each box is called a node. Each of these nodes is another object. This example features three types of nodes representing elements, text within the elements, and attribute.

3: USE A RENDERING ENGINE TO SHOW THE PAGE ON SCREEN

If there is no CSS, the rendering engine will apply default styles to HTML elements. However, the HTML code for this example links to a CSS style sheet, so the browser requests that file and displays the page accordingly.

When the browser receives CSS rules, the rendering engine processes them and applies each rule to its corresponding elements. This is how the browser positions the elements in the correct place, with the right colors, fonts, and so on.

All major browsers use a JavaScript interpreter to translate your instructions (in JavaScript) into instructions the computer can follow.

When you use JavaScript in the browser, there is a part of the browser that is called an interpreter (or scripting engine).

The interpreter takes your instructions (in JavaScript) and translates them into instructions the browser can use to achieve the tasks you want it to perform.

In an interpreted programming language, like JavaScript, each line of code is translated one-by-one as the script is run.

1

The browser receives an HTML page.

<!DOCTYPE html>
<html>
 <head>
 <title>Constructive & Co.</title>
 <link rel=“stylesheet” href=“css/c01.css” />
 </head>
 <body>
 <h1>Constructive & Co.</h1>
 <p>For all orders and inquiries please call
 555-3344</p>
 </body>
</html>

2

It creates a model of the page and stores it in memory.

[image: images]

3

It shows the page on screen using a rendering engine.

[image: images]

SUMMARY

THE ABC OF PROGRAMMING

B: How do computers fit in with the world around them?

	Computers create models of the world using data.

	The models use objects to represent physical things. Objects can have: properties that tell us about the object; methods that perform tasks using the properties of that object; events which are triggered when a user interacts with the computer.

	Programmers can write code to say “When this event occurs, run that code.”

	Web browsers use HTML markup to create a model of the web page. Each element creates its own node (which is a kind of object).

	To make web pages interactive, you write code that uses the browser's model of the web page.

1/c

HOW DO I WRITE A SCRIPT FOR A WEB PAGE?

HOW HTML, CSS, & JAVASCRIPT FIT TOGETHER

Before diving into the JavaScript language, you need to know how it will fit together with the HTML and CSS in your web pages.

Web developers usually talk about three languages that are used to create web pages: HTML, CSS, and JavaScript.

[image: image]

CONTENT LAYER

.html files

This is where the content of the page lives. The HTML gives the page structure and adds semantics.

Where possible, aim to keep the three languages in separate files, with the HTML page linking to CSS and JavaScript files.

[image: image]

PRESENTATION LAYER

.css files

The CSS enhances the HTML page with rules that state how the HTML content is presented (backgrounds, borders, box dimensions, colors, fonts, etc.).

Each language forms a separate layer with a different purpose. Each layer, from left to right, builds on the previous one.

[image: image]

BEHAVIOR LAYER

.js files

This is where we can change how the page behaves, adding interactivity. We will aim to keep as much of our JavaScript as possible in separate files.

Programmers often refer to this as a separation of concerns.

PROGRESSIVE ENHANCEMENT

These three layers form the basis of a popular approach to building web pages called progressive enhancement.

As more and more web-enabled devices come onto the market, this concept is becoming more widely adopted.

[image: image]

HTML ONLY

Starting with the HTML layer allows you to focus on the most important thing about your site: its content.

Being plain HTML, this layer should work on all kinds of devices, be accessible to all users, and load quite quickly on slow connections.

It's not just screen sizes that are varied - connection speeds and capabilities of each device can also differ.

[image: image]

HTML + CSS

Adding the CSS rules in a separate file keeps rules regarding how the page looks away from the content itself.

You can use the same style sheet with all of your site, making your sites faster to load and easier to maintain. Or you can use different style sheets with the same content to create different views of the same data.

Also, some people browse with JavaScript turned off, so you need to make sure that the page still works for them.

[image: image]

HTML + CSS + JAVASCRIPT

The JavaScript is added last and enhances the usability of the page or the experience of interacting with the site.

Keeping it separate means that the page still works if the user cannot load or run the JavaScript. You can also reuse the code on several pages (making the site faster to load and easier to maintain).

CREATING A BASIC JAVASCRIPT

JavaScript is written in plain text, just like HTML and CSS, so you do not need any new tools to write a script. This example adds a greeting into an HTML page. The greeting changes depending on the time of day.

[image: image] Create a folder to put the example in called c01, then start up your favorite code editor, and enter the text to the right.

A JavaScript file is just a text file (like HTML and CSS files are) but it has a .js file extension, so save this file with the name add-content.js

Don't worry about what the code means yet, for now we will focus on how the script is created and how it fits with an HTML page.

var today = new Date();
var hourNow = today.getHours();
var greeting;

if (hourNow > 18) {
 greeting = ‘Good evening!’;
} else if (hourNow > 12) {
 greeting = ‘Good afternoon!’;
} else if (hourNow > 0) {
 greeting = ‘Good morning!’;
} else {
 greeting = ‘Welcome!’;
}

document.write(‘<h3>’ + greeting + ‘</h3>’);

[image: image] Get the CSS and images for this example from the website that accompanies the book: www.javascriptbook.com

To keep the files organized, in the same way that CSS files often live in a folder called styles or css, your JavaScript files can live in a folder called scripts, javascript, or js. In this case, save your file in a folder called js

[image: image]

Here you can see the file structure that you will end up with when you finish the example. Always treat file names as being case-sensitive.

LINKING TO A JAVASCRIPT FILE FROM AN HTML PAGE

When you want to use JavaScript with a web page, you use the HTML <script> element to tell the browser it is coming across a script. Its src attribute tells people where the JavaScript file is stored.

[image: image] In your code editor, enter the HTML shown on the left. Save this file with the name add-content.html

The HTML <script> element is used to load the JavaScript file into the page. It has an attribute called src, whose value is the path to the script you created.

This tells the browser to find and load the script file (just like the src attribute on an tag).

<!DOCTYPE html>
<html>
 <head>
 <title>Constructive & Co.</title>
 <link rel=“stylesheet” href=“css/c01.css” />
 </head>
 <body>
 <h1>Constructive & Co.</h1>
 <script src=“js/add-content.js”></script>
 <p>For all orders and inquiries please call
 555-3344</p>
 </body>
</html>

[image: image] Open the HTML file in your browser. You should see that the JavaScript has added a greeting (in this case, Good Afternoon!) to the page. (These greetings are coming from the JavaScript file; they are not in the HTML file.)

Please note: Internet Explorer sometimes prevents JavaScript running when you open a page stored on your hard drive. If this affects you, please try Chrome, Firefox, Opera, or Safari instead.

[image: image]

THE SOURCE CODE IS NOT AMENDED

If you look at the source code for the example you just created, you will see that the HTML is still exactly the same.

[image: image] Once you have tried the example in your browser, view the source code for the page. (This option is usually under the View, Tools or Develop menu of the browser.)

[image: image]

[image: image] The source of the web page does not actually show the new element that has been added into the page; it just shows the link to the JavaScript file.

As you move through the book, you will see most of the scripts are added just before the closing </body> tag (this is often considered a better place to put your scripts).

[image: image]

PLACING THE SCRIPT IN THE PAGE

You may see JavaScript in the HTML between opening <script> and closing </script> tags (but it is better to put scripts in their own files).

[image: image] Finally, try opening the HTML file, removing the src attribute from the opening <script> tag, and adding the new code shown on the left between the opening <script> tag and the closing </script> tag. The src attribute is no longer needed because the JavaScript is in the HTML page.

As noted on p44, it is better not to mix JavaScript in your HTML pages like this, but it is mentioned here as you may come across this technique.

<!DOCTYPE html>
<html>
 <head>
 <title>Constructive & Co.</title>
 <link rel=“stylesheet” href=“css/c01.css” />
 </head>
 <body>
 <h1>Constructive & Co.</h1>
 <script>document.write(‘<h3>Welcome!</h3>’);
 </script>
 <p>For all orders and inquiries please call
 555-3344</p>
 </body>
</html>

[image: image] Open the HTML file in your web browser and the welcome greeting is written into the page.

As you may have guessed, document.write() writes content into the document (the web page). It is a simple way to add content to a page, but not always the best. Chapter 5 discusses various ways to update the content of a page.

[image: image]

HOW TO USE OBJECTS & METHODS

This one line of JavaScript shows how to use objects and methods. Programmers refer to this as calling a method of an object.

[image: image]

Behind the scenes, the browser uses a lot more code to make the words appear on the screen, but you don't need to know how the browser does this.

You only need to know how to call the object and method, and how to tell it the information it needs to do the job you want it to. It will do the rest.

There are lots of objects like the document object, and lots of methods like the write() method that will help you write your own scripts.

JAVASCRIPT RUNS WHERE IT IS FOUND IN THE HTML

When the browser comes across a <script> element, it stops to load the script and then checks to see if it needs to do anything.

[image: image]

SUMMARY

THE ABC OF PROGRAMMING

C: How do I write a script for a web page?

	It is best to keep JavaScript code in its own JavaScript file. JavaScript files are text files (like HTML pages and CSS style sheets), but they have the .js extension.

	The HTML <script> element is used in HTML pages to tell the browser to load the JavaScript file (rather like the <link> element can be used to load a CSS file).

	If you view the source code of the page in the browser, the JavaScript will not have changed the HTML, because the script works with the model of the web page that the browser has created.

 2

BASIC JAVASCRIPT INSTRUCTIONS

In this chapter, you will start learning to read and write JavaScript. You will also learn how to give a web browser instructions you want it to follow.

THE LANGUAGE: SYNTAX AND GRAMMAR

Like any new language, there are new words to learn (the vocabulary) and rules for how these can be put together (the grammar and syntax of the language).

GIVING INSTRUCTIONS: FOR A BROWSER TO FOLLOW

Web browsers (and computers in general) approach tasks in a very different way than a human might. Your instructions need to reflect how computers get things done.

We will start with a few of the key building blocks of the language and look at how they can be used to write some very basic scripts (consisting of a few simple steps) before going on to look at some more complex concepts in subsequent chapters.

[image: image]

STATEMENTS

A script is a series of instructions that a computer can follow one-by-one. Each individual instruction or step is known as a statement. Statements should end with a semicolon.

We will look at what the code on the right does shortly, but for the moment note that:

	Each of the lines of code in green is a statement.

	The pink curly braces indicate the start and end of a code block. (Each code block could contain many more statements.)

	The code in purple determines which code should run (as you will see on p149).

JAVASCRIPT IS CASE SENSITIVE

JavaScript is case sensitive so hourNow means something different to HourNow or HOURNOW.

var today = new Date();
var hourNow = today.getHours();
var greeting;

if (hourNow > 18) {
 greeting = ‘Good evening’;
} else if (hourNow > 12) {
 greeting = ‘Good afternoon’;
} else if (hourNow > 0) {
 greeting = ‘Good morning’;
} else {
 greeting = ‘Welcome’;
}
document.write(greeting);

STATEMENTS ARE INSTRUCTIONS AND EACH ONE STARTS ON A NEW LINE

A statement is an individual instruction that the computer should follow. Each one should start on a new line and end with a semicolon. This makes your code easier to read and follow.

The semicolon also tells the JavaScript interpreter when a step is over, indicating that it should move to the next step.

STATEMENTS CAN BE ORGANIZED INTO CODE BLOCKS

Some statements are surrounded by curly braces; these are known as code blocks. The closing curly brace is not followed by a semicolon.

Above, each code block contains one statement related to what the current time is. Code blocks will often be used to group together many more statements. This helps programmers organize their code and makes it more readable.

COMMENTS

You should write comments to explain what your code does. They help make your code easier to read and understand. This can help you and others who read your code.

/* This script displays a greeting to the user based upon the current time.
 It is an example from JavaScript & jQuery book */

var today = new Date(); // Create a new date object
var hourNow = today.getHours(); // Find the current hour
var greeting;

// Display the appropriate greeting based on the current time
if (hourNow > 18) {
 greeting = ‘Good evening’;
} else if (hourNow > 12) {
 greeting = ‘Good afternoon’;
} else if (hourNow > 0) {
 greeting = ‘Good morning’;
} else {
 greeting = ‘Welcome’;
}
document.write(greeting);

JavaScript code is green Multi-line comments are pink Single-line comments are gray

MULTI-LINE COMMENTS

To write a comment that stretches over more than one line, you use a multi-line comment, starting with the /* characters and ending with the */ characters. Anything between these characters is not processed by the JavaScript interpreter.

Multi-line comments are often used for descriptions of how the script works, or to prevent a section of the script from running when testing it.

SINGLE-LINE COMMENTS

In a single-line comment, anything that follows the two forward slash characters // on that line will not be processed by the JavaScript interpreter. Single-line comments are often used for short descriptions of what the code is doing.

Good use of comments will help you if you come back to your code after several days or months. They also help those who are new to your code.

WHAT IS A VARIABLE?

A script will have to temporarily store the bits of information it needs to do its job. It can store this data in variables.

[image: image]

When you write JavaScript, you have to tell the interpreter every individual step that you want it to perform. This sometimes involves more detail than you might expect.

Think about calculating the area of a wall; in math the area of a rectangle is obtained by multiplying two numbers:

width × height = area

You may be able to do calculations like this in your head, but when writing a script to do this calculation, you need to give the computer very detailed instructions. You might tell it to perform the following four steps in order:

1. Remember the value for width

2. Remember the value for height

3. Multiply width by height to get the area

4. Return the result to the user

In this case, you would use variables to "remember" the values for width and height. (This also illustrates how a script contains very explicit instructions about exactly what you want the computer to do.) You can compare variables to short-term memory, because once you leave the page, the browser will forget any information it holds.

A variable is a good name for this concept because the data stored in a variable can change (or vary) each time a script runs.

No matter what the dimensions of any individual wall are, you know that you can find its area by multiplying the width of that wall by its height. Similarly, scripts often need to achieve the same goal even when they are run with different data, so variables can be used to represent values in your scripts that are likely to change. The result is said to be calculated or computed using the data stored in the variables.

The use of variables to represent numbers or other kinds of data is very similar to the concept of algebra (where letters are used to represent numbers). There is one key difference, however. The equals sign does something very different in programming (as you will see on the next two pages).

VARIABLES: HOW TO DECLARE THEM

Before you can use a variable, you need to announce that you want to use it. This involves creating the variable and giving it a name. Programmers say that you declare the variable.

[image: image]

var is an example of what programmers call a keyword. The JavaScript interpreter knows that this keyword is used to create a variable.

In order to use the variable, you must give it a name. (This is sometimes called an identifier.) In this case, the variable is called quantity.

If a variable name is more than one word, it is usually written in camelCase. This means the first word is all lowercase and any subsequent words have their first letter capitalized.

VARIABLES: HOW TO ASSIGN THEM A VALUE

Once you have created a variable, you can tell it what information you would like it to store for you. Programmers say that you assign a value to the variable.

[image: image]

You can now use the variable by its name. Here we set a value for the variable called quantity. Where possible, a variable's name should describe the kind of data the variable holds.

The equals sign (=) is an assignment operator. It says that you are going to assign a value to the variable. It is also used to update the value given to a variable (see p68).

Until you have assigned a value to a variable, programmers say the value is undefined.

Where a variable is declared can have an effect upon whether the rest of the script can use it. Programmers call this the scope of a variable and it is covered on p98.

DATA TYPES

JavaScript distinguishes between numbers, strings, and true or false values known as Booleans.

NUMERIC DATA TYPE

The numeric data type handles numbers.

[image: image]

For tasks that involve counting or calculating sums, you will use numbers 0-9. For example, five thousand, two hundred and seventy-two would be written 5272 (note there is no comma between the thousands and the hundreds). You can also have negative numbers (such as -23678) and decimals (three quarters is written as 0.75).

STRING DATA TYPE

The strings data type consists of letters and other characters.

[image: image]

Note how the string data type is enclosed within a pair of quotes. These can be single or double quotes, but the opening quote must match the closing quote.

Strings can be used when working with any kind of text. They are frequently used to add new content into a page and they can contain HTML markup.

BOOLEAN DATA TYPE

Boolean data types can have one of two values: true or false.

[image: image]

It might seem a little abstract at first, but the Boolean data type is actually very helpful.

You can think of it a little like a light switch – it is either on or off. As you will see in Chapter 4, Booleans are helpful when determining which part of a script should run.

Numbers are not only used for things like calculators; they are also used for tasks such as determining the size of the screen, moving the position of an element on a page, or setting the amount of time an element should take to fade in.

In addition to these three data types, JavaScript also has others (arrays, objects, undefined, and null) that you will meet in later chapters.

Unlike some other programming languages, when declaring a variable in JavaScript, you do not need to specify what type of data it will hold.

USING A VARIABLE TO STORE A NUMBER

[image: image]

[image: image]

[image: image]

Here, three variables are created and values are assigned to them.

	price holds the price of an individual tile

	quantity holds the number of tiles a customer wants

	total holds the total cost of the tiles

Note that the numbers are not written inside quotation marks. Once a value has been assigned to a variable, you can use the variable name to represent that value (much like you might have done in algebra). Here, the total cost is calculated by multiplying the price of a single tile by the number of tiles the customer wants.

The result is then written into the page on the final two lines. You see this technique in more detail on p194 and p216. The first of these two lines finds the element whose id attribute has a value of cost, and the final line replaces the content of that element with new content.

Note: There are many ways to write content into a page, and several places you can place your script. The advantages and disadvantages of each technique are discussed on p226. This technique will not work in IE8.

USING A VARIABLE TO STORE A STRING

[image: image]

[image: image]

[image: image]

For the moment, concentrate on the first four lines of JavaScript. Two variables are declared (username and message), and they are used to hold strings (the user's name and a message for that user).

The code to update the page (shown in the last four lines) is discussed fully in Chapter 5. This code selects two elements using the values of their id attributes. The text in those elements is updated using the values stored in these variables.

Note how the string is placed inside quote marks. The quotes can be single or double quotes, but they must match. If you start with a single quote, you must end with a single quote, and if you start with a double quote, you must end with a double quote:

[image: image]

Quotes should be straight (not curly) quotes:

[image: image]

Strings must always be written on one line:

[image: image]

USING QUOTES INSIDE A STRING

[image: image]

[image: image]

[image: image]

Sometimes you will want to use a double or single quote mark within a string.

Because strings can live in single or double quotes, if you just want to use double quotes in the string, you could surround the entire string in single quotes.

If you just want to use single quotes in the string, you could surround the string in double quotes (as shown in the third line of this code example).

You can also use a technique called escaping the quotation characters. This is done by using a backwards slash (or "backslash") before any type of quote mark that appears within a string (as shown on the fourth line of this code sample). The backwards slash tells the interpreter that the following character is part of the string, rather than the end of it.

Techniques for adding content to a page are covered in Chapter 5. This example uses a property called innerHTML to add HTML to the page. In certain cases, this property can pose a security risk (discussed on p228 – p231).

USING A VARIABLE TO STORE A BOOLEAN

[image: image]

[image: image]

[image: image]

A Boolean variable can only have a value of true or false, but this data type is very helpful.

In the example on the right, the values true or false are used in the class attributes of HTML elements. These values trigger different CSS class rules: true shows a check, false shows a cross. (You learn how the class attribute is set in Chapter 5.)

It is rare that you would want to write the words true or false into the page for the user to read, but this data type does have two very popular uses:

First, Booleans are used when the value can only be true/false. You could also think of these values as on/off or 0/1: true is equivalent to on or 1, false is equivalent to off or 0

Second, Booleans are used when your code can take more than one path. Remember, different code may run in different circumstances (as shown in the flowcharts throughout the book).

[image: image]

The path the code takes depends on a test or condition.

SHORTHAND FOR CREATING VARIABLES

[image: image]

[image: image]

Programmers sometimes use shorthand to create variables. Here are three variations of how to declare variables and assign them values:

1. Variables are declared and values assigned in the same statement.

2. Three variables are declared on the same line, then values assigned to each.

3. Two variables are declared and assigned values on the same line. Then one is declared and assigned a value on the next line.

(The third example shows two numbers, but you can declare variables that hold different types of data on the same line, e.g., a string and a number.)

4. Here, a variable is used to hold a reference to an element in the HTML page. This allows you to work directly with the element stored in that variable. (See more about this on p190.)

While the shorthand might save you a little bit of typing, it can make your code a little harder to follow. So, when you are starting off, you will find it easier to spread your code over a few more lines to make it easier to read and understand.

CHANGING THE VALUE OF A VARIABLE

[image: image]

[image: image]

Once you have assigned a value to a variable, you can then change what is stored in the variable later in the same script.

Once the variable has been created, you do not need to use the var keyword to assign it a new value. You just use the variable name, the equals sign (also known as the assignment operator), and the new value for that attribute.

For example, the value of a shipping variable might start out as being false. Then something in the code might change the ability to ship the item and you could therefore change the value to true.

In this code example, the values of the two variables are both swapped from being true to false and vice versa.

RULES FOR NAMING VARIABLES

Here are six rules you must always follow when giving a variable a name:

1

The name must begin with a letter, dollar sign ($), or an underscore (_). It must not start with a number.

2

The name can contain letters, numbers, dollar sign ($), or an underscore (_). Note that you must not use a dash (-) or a period (.) in a variable name.

3

You cannot use keywords or reserved words. Keywords are special words that tell the interpreter to do something. For example, var is a keyword used to declare a variable. Reserved words are ones that may be used in a future version of JavaScript.

ONLINE EXTRA

View a full list of keywords and reserved words in JavaScript.

4

All variables are case sensitive, so score and Score would be different variable names, but it is bad practice to create two variables that have the same name using different cases.

5

Use a name that describes the kind of information that the variable stores. For example, firstName might be used to store a person's first name, lastName for their last name, and age for their age.

6

If your variable name is made up of more than one word, use a capital letter for the first letter of every word after the first word. For example, firstName rather than firstname (this is referred to as camel case). You can also use an underscore between each word (you cannot use a dash).

ARRAYS

An array is a special type of variable. It doesn't just store one value; it stores a list of values.

You should consider using an array whenever you are working with a list or a set of values that are related to each other.

Arrays are especially helpful when you do not know how many items a list will contain because, when you create the array, you do not need to specify how many values it will hold.

If you don't know how many items a list will contain, rather than creating enough variables for a long list (when you might only use a small percentage of them), using an array is considered a better solution.

For example, an array can be suited to storing the individual items on a shopping list because it is a list of related items.

Additionally, each time you write a new shopping list, the number of items on it may differ.

As you will see on the next page, values in an array are separated by commas.

In Chapter 12, you will see that arrays can be very helpful when representing complex data.

[image: image]

CREATING AN ARRAY

[image: image]

[image: image]

[image: image]

The array literal (shown in the first code sample) is preferred over the array constructor when creating arrays.

You create an array and give it a name just like you would any other variable (using the var keyword followed by the name of the array).

The values are assigned to the array inside a pair of square brackets, and each value is separated by a comma. The values in the array do not need to be the same data type, so you can store a string, a number and a Boolean all in the same array.

This technique for creating an array is known as an array literal. It is usually the preferred method for creating an array. You can also write each value on a separate line:

colors = [‘white’,
 ‘black’,
 ‘custom’];

On the left, you can see an array created using a different technique called an array constructor. This uses the new keyword followed by Array(); The values are then specified in parentheses (not square brackets), and each value is separated by a comma. You can also use a method called item() to retrieve data from the array. (The index number of the item is specified in the parentheses.)

VALUES IN ARRAYS

Values in an array are accessed as if they are in a numbered list. It is important to know that the numbering of this list starts at zero (not one).

NUMBERING ITEMS IN AN ARRAY

Each item in an array is automatically given a number called an index. This can be used to access specific items in the array. Consider the following array which holds three colors:

var colors;
colors = [‘white’,
 ‘black’,
 ‘custom’];

Confusingly, index values start at 0 (not 1), so the following table shows items from the array and their corresponding index values:

	INDEX
	VALUE

	0
	‘white’

	1
	‘black’

	2
	‘custom’

ACCESSING ITEMS IN AN ARRAY

To retrieve the third item on the list, the array name is specified along with the index number in square brackets.

Here you can see a variable called itemThree is declared. Its value is set to be the third color from the colors array.

var itemThree;
itemThree = colors[2];

NUMBER OF ITEMS IN AN ARRAY

Each array has a property called length, which holds the number of items in the array.

Below you can see that a variable called numColors is declared. Its value is set to be the number of the items in the array.

The name of the array is followed by a period symbol (or full stop) which is then followed by the length keyword.

var numColors;
numColors = colors.length;

Throughout the book (especially in Chapter 12) you meet more features of arrays, which are a very flexible and powerful feature of JavaScript.

ACCESSING & CHANGING VALUES IN AN ARRAY

[image: image]

[image: image]

The first lines of code on the left create an array containing a list of three colors. (The values can be added on the same line or on separate lines as shown here.)

Having created the array, the third item on the list is changed from ‘custom’ to ‘beige’.

To access a value from an array, after the array name you specify the index number for that value inside square brackets.

You can change the value of an item an array by selecting it and assigning it a new value just as you would any other variable (using the equals sign and the new value for that item).

In the last two statements, the newly updated third item in the array is added to the page.

If you wanted to write out all of the items in an array, you would use a loop, which you will meet on p170.

EXPRESSIONS

An expression evaluates into (results in) a single value. Broadly speaking there are two types of expressions.

1

EXPRESSIONS THAT JUST ASSIGN A VALUE TO A VARIABLE

In order for a variable to be useful, it needs to be given a value. As you have seen, this is done using the assignment operator (the equals sign).

[image: image]

The value of color is now beige.

When you first declare a variable using the var keyword, it is given a special value of undefined. This will change when you assign a value to it. Technically, undefined is a data type like a number, string, or Boolean.

2

EXPRESSIONS THAT USE TWO OR MORE VALUES TO RETURN A SINGLE VALUE

You can perform operations on any number of individual values (see next page) to determine a single value. For example:

[image: image]

The value of area is now 6.

Here the expression 3 * 2 evaluates into 6. This example also uses the assignment operator, so the result of the expression 3 * 2 is stored in the variable called area.

Another example where an expression uses two values to yield a single value would be where two strings are joined to create a single string.

OPERATORS

Expressions rely on things called operators; they allow programmers to create a single value from one or more values.

Covered in this chapter:

ASSIGNMENT OPERATORS

Assign a value to a variable

[image: image]

The value of color is now beige. (See p61)

ARITHMETIC OPERATORS

Perform basic math

[image: image]

The value of area is now 6. (See p76)

STRING OPERATORS

Combine two strings

[image: image]

The value of greeting is now Hi Molly. (See p78)

Covered in Chapter 4:

COMPARISON OPERATORS

Compare two values and return true or false

[image: image]

The value of buy is false.
(See p150)

LOGICAL OPERATORS

Combine expressions and return true or false

[image: image]

The value of buy is now true.
(See p156)

ARITHMETIC OPERATORS

JavaScript contains the following mathematical operators, which you can use with numbers. You may remember some from math class.

[image: image]

ORDER OF EXECUTION

Several arithmetic operations can be performed in one expression, but it is important to understand how the result will be calculated. Multiplication and division are performed before addition or subtraction. This can affect the number that you expect to see. To illustrate this effect, look at the following examples.

Here the numbers are calculated left to right, so the total is 16:
total = 2 + 4 + 10;

But in the following example the total is 42 (not 60):
total = 2 + 4 * 10;

This is because multiplication and division happen before addition and subtraction.

To change the order in which operations are performed, place the calculation you want done first inside parentheses. So for the following, the total is 60:
total = (2 + 4) * 10;

The parentheses indicate that the 2 is added to the 4, and then the resulting figure is multiplied by 10.

USING ARITHMETIC OPERATORS

[image: image]

[image: image]

This example demonstrates how mathematical operators are used with numbers to calculate the combined values of two costs.

The first couple of lines create two variables: one to store the subtotal of the order, the other to hold the cost of shipping the order; so the variables are named accordingly: subtotal and shipping.

On the third line, the total is calculated by adding together these two values.

This demonstrates how the mathematical operators can use variables that represent numbers. (That is, the numbers do not need to be written explicitly into the code.)

The remaining six lines of code write the results to the screen.

STRING OPERATOR

There is just one string operator: the + symbol. It is used to join the strings on either side of it.

There are many occasions where you may need to join two or more strings to create a single value. Programmers call the process of joining together two or more strings to create one new string concatenation.

For example, you might have a first and last name in two separate variables and want to join them to show a full name. In this example, the variable called fullName would hold the string ‘Ivy Stone’.

var firstName = ‘Ivy ’;
var lastName = ‘Stone’;
var fullName = firstName + lastName;

MIXING NUMBERS AND STRINGS TOGETHER

When you place quotes around a number, it is a string (not a numeric data type), and you cannot perform addition operations on strings.

var cost1 = ‘7’;
var cost2 = ‘9’;
var total = cost1 + cost2;

You would end up with a string saying ‘79’.

If you try to add a numeric data type to a string, then the number becomes part of the string, e.g., adding a house number to a street name:

var number = 12;
var street = ‘Ivy Road’;
var add = number + street;

You would end up with a string saying ‘12Ivy Road’.

If you try to use any of the other arithmetic operators on a string, then the value that results is usually a value called NaN. This means “not a number.”

var score = ‘seven’;
var score2 = ‘nine’;
var total = score * score2;

You would end up with the value NaN.

USING STRING OPERATORS

[image: image]

[image: image]

[image: image]

This example will display a personalized welcome message on the page.

The first line creates a variable called greeting, which stores the message for the user. Here the greeting is the word Howdy.

The second line creates a variable that stores the name of the user. The variable is called name, and the user in this case is Molly.

The personal welcome message is created by concatenating (or joining) these two variables, adding an exclamation mark, and storing them in a new variable called welcomeMessage.

Look back at the greeting variable on the first line, and note how there is a space after the word Howdy. If the space was omitted, the value of welcomeMessage would be "HowdyMolly!"

[image: image]

EXAMPLE

BASIC JAVASCRIPT INSTRUCTIONS

This example combines several techniques that you have seen throughout this chapter.

You can see the code for this example on the next two pages. Single line comments are used to describe what each section of the code does.

To start, three variables are created that store information that is used in the welcome message. These variables are then concatenated (joined together) to create the full message the user sees.

The next part of the example demonstrates how basic math is performed on numbers to calculate the cost of a sign.

	A variable called sign holds the text the sign will show.

	A property called length is used to determine how many characters are in the string (you will meet this property on p128).

	The cost of the sign (the subtotal) is calculated by multiplying the number of tiles by the cost of each one.

	The grand total is created by adding $7 for shipping.

Finally, the information is written into the page by selecting elements and then replacing the content of that element (using a technique you meet fully in Chapter 5). It selects elements from the HTML page using the value of their id attributes and then updates the text inside those elements.

Once you have worked your way through this example, you should have a good basic understanding of how data is stored in variables and how to perform basic operations with the data in those variables.

[image: image]

[image: image]

SUMMARY

BASIC JAVASCRIPT INSTRUCTIONS

	A script is made up of a series of statements. Each statement is like a step in a recipe.

	Scripts contain very precise instructions. For example, you might specify that a value must be remembered before creating a calculation using that value.

	Variables are used to temporarily store pieces of information used in the script.

	Arrays are special types of variables that store more than one piece of related information.

	JavaScript distinguishes between numbers (0-9), strings (text), and Boolean values (true or false).

	Expressions evaluate into a single value.

	Expressions rely on operators to calculate a value.

 3

FUNCTIONS, METHODS & OBJECTS

Browsers require very detailed instructions about what we want them to do. Therefore, complex scripts can run to hundreds (even thousands) of lines. Programmers use functions, methods, and objects to organize their code. This chapter is divided into three sections that introduce:

FUNCTIONS & METHODS

Functions consist of a series of statements that have been grouped together because they perform a specific task. A method is the same as a function, except methods are created inside (and are part of) an object.

OBJECTS

In Chapter 1 you saw that programmers use objects to create models of the world using data, and that objects are made up of properties and methods. In this section, you learn how to create your own objects using JavaScript.

BUILT-IN OBJECTS

The browser comes with a set of objects that act like a toolkit for creating interactive web pages. This section introduces you to a number of built-in objects, which you will then see used throughout the rest of the book.

[image: images]

WHAT IS A FUNCTION?

Functions let you group a series of statements together to perform a specific task. If different parts of a script repeat the same task, you can reuse the function (rather than repeating the same set of statements).

Grouping together the statements that are required to answer a question or perform a task helps organize your code.

Furthermore, the statements in a function are not always executed when a page loads, so functions also offer a way to store the steps needed to achieve a task. The script can then ask the function to perform all of those steps as and when they are required. For example, you might have a task that you only want to perform if the user clicks on a specific element in the page.

If you are going to ask the function to perform its task later, you need to give your function a name. That name should describe the task it is performing. When you ask it to perform its task, it is known as calling the function.

The steps that the function needs to perform in order to perform its task are packaged up in a code block. You may remember from the last chapter that a code block consists of one or more statements contained within curly braces. (And you do not write a semicolon after the closing curly brace - like you do after a statement.)

Some functions need to be provided with information in order to achieve a given task. For example, a function to calculate the area of a box would need to know its width and height. Pieces of information passed to a function are known as parameters.

When you write a function and you expect it to provide you with an answer, the response is known as a return value.

On the right, there is an example of a function in the JavaScript file. It is called updateMessage().

Don't worry if you do not understand the syntax of the example on the right; you will take a closer look at how to write and use functions in the pages that follow.

Remember that programming languages often rely upon on name/value pairs. The function has a name, updateMessage, and the value is the code block (which consists of statements). When you call the function by its name, those statements will run.

You can also have anonymous functions. They do not have a name, so they cannot be called. Instead, they are executed as soon as the interpreter comes across them.

A BASIC FUNCTION

In this example, the user is shown a message at the top of the page. The message is held in an HTML element whose id attribute has a value of message. The message is going to be changed using JavaScript.

Before the closing </body> tag, you can see the link to the JavaScript file. The JavaScript file starts with a variable used to hold a new message, and is followed by a function called updateMessage().

You do not need to worry about how this function works yet - you will learn about that over the next few pages. For the moment, it is just worth noting that inside the curly braces of the function are two statements.

[image: images]

[image: images]

[image: images]

These statements update the message at the top of the page. The function acts like a store; it holds the statements that are contained in the curly braces until you are ready to use them. Those statements are not run until the function is called. The function is only called on the last line of this script.

DECLARING A FUNCTION

To create a function, you give it a name and then write the statements needed to achieve its task inside the curly braces.
This is known as a function declaration.

You declare a function using the function keyword.

You give the function a name (sometimes called an identifier) followed by parentheses.

The statements that perform the task sit in a code block. (They are inside curly braces.)

[image: images]

This function is very basic (it only contains one statement), but it illustrates how to write a function. Most functions that you will see or write are likely to consist of more statements.

The point to remember is that functions store the code required to perform a specific task, and that the script can ask the function to perform that task whenever needed.

If different parts of a script need to perform the same task, you do not need to repeat the same statements multiple times - you use a function to do it (and reuse the same code).

CALLING A FUNCTION

Having declared the function, you can then execute all of the statements between its curly braces with just one line of code. This is known as calling the function.

To run the code in the function, you use the function name followed by parentheses.

In programmer-speak, you would say that this code calls a function.

You can call the same function as many times as you want within the same JavaScript file.

[image: images]

1. The function can store the instructions for a specific task.

2. When you need the script to perform that task, you call the function.

3. The function executes the code in that code block.

4. When it has finished, the code continues to run from the point where it was initially called.

[image: images]

Sometimes you will see a function called before it has been declared. This still works because the interpreter runs through a script before executing each statement, so it will know that a function declaration appears later in the script. But for the moment, we will declare the function before calling it.

DECLARING FUNCTIONS THAT NEED INFORMATION

Sometimes a function needs specific information to perform its task. In such cases, when you declare the function you give it parameters. Inside the function, the parameters act like variables.

If a function needs information to work, you indicate what it needs to know in parentheses after the function name.

The items that appear inside these parentheses are known as the parameters of the function. Inside the function those words act like variable names.

[image: images]

This function will calculate and return the area of a rectangle. To do this, it needs the rectangle's width and height. Each time you call the function these values could be different.

This demonstrates how the code can perform a task without knowing the exact details in advance, as long as it has rules it can follow to achieve the task.

So, when you design a script, you need to note the information the function will require in order to perform its task.

If you look inside the function, the parameter names are used just as you would use variables. Here, the parameter names width and height represent the width and height of the wall.

CALLING FUNCTIONS THAT NEED INFORMATION

When you call a function that has parameters, you specify the values it should use in the parentheses that follow its name. The values are called arguments, and they can be provided as values or as variables.

ARGUMENTS AS VALUES

When the function below is called, the number 3 will be used for the width of the wall, and 5 will be used for its height.

[image: images]

ARGUMENTS AS VARIABLES

You do not have to specify actual values when calling a function - you can use variables in their place. So the following does the same thing.

[image: images]

PARAMETERS VS ARGUMENTS

People often use the terms parameter and argument interchangeably, but there is a subtle difference.

On the left-hand page, when the function is declared, you can see the words width and height used (in parentheses on the first line). Inside the curly braces of the function, those words act like variables. These names are the parameters.

On this page, you can see that the getArea() function is being called and the code specifies real numbers that will be used to perform the calculation (or variables that hold real numbers).

These values that you pass into the code (the information it needs to calculate the size of this particular wall) are called arguments.

GETTING A SINGLE VALUE OUT OF A FUNCTION

Some functions return information to the code that called them. For example, when they perform a calculation, they return the result.

This calculateArea() function returns the area of a rectangle to the code that called it.

Inside the function, a variable called area is created. It holds the calculated area of the box.

The return keyword is used to return a value to the code that called the function.

[image: images]

Note that the intrepreter leaves the function when return is used. It goes back to the statement that called it. If there had been any subsequent statements in this function, they would not be processed.

The wallOne variable holds the value 15, which was calculated by the calculateArea() function.

The wallTwo variable holds the value 40, which was calculated by the same calculateArea() function.

This also demonstrates how the same function can be used to perform the same steps with different values.

GETTING MULTIPLE VALUES OUT OF A FUNCTION

Functions can return more than one value using an array. For example, this function calculates the area and volume of a box.

First, a new function is created called getSize(). The area of the box is calculated and stored in a variable called area.

The volume is calculated and stored in a variable called volume. Both are then placed into an array called sizes.

This array is then returned to the code that called the getSize() function, allowing the values to be used.

[image: images]

The areaOne variable holds the area of a box that is 3 × 2. The area is the first value in the sizes array.

The volumeOne variable holds the volume of a box that is 3 × 2 × 3. The volume is the second value in the sizes array.

ANONYMOUS FUNCTIONS & FUNCTION EXPRESSIONS

Expressions produce a value. They can be used where values are expected. If a function is placed where a browser expects to see an expression, (e.g., as an argument to a function), then it gets treated as an expression.

FUNCTION DECLARATION

A function declaration creates a function that you can call later in your code. It is the type of function you have seen so far in this book.

In order to call the function later in your code, you must give it a name, so these are known as named functions. Below, a function called area() is declared, which can then be called using its name.

[image: images]

As you will see on p456, the interpreter always looks for variables and function declarations before going through each section of a script, line-by-line. This means that a function created with a function declaration can be called before it has even been declared.

For more information about how variables and functions are processed first, see the discussion about execution context and hoisting on p452 - p457.

FUNCTION EXPRESSION

If you put a function where the interpreter would expect to see an expression, then it is treated as an expression, and it is known as a function expression. In function expressions, the name is usually omitted. A function with no name is called an anonymous function. Below, the function is stored in a variable called area. It can be called like any function created with a function declaration.

[image: images]

In a function expression, the function is not processed until the interpreter gets to that statement. This means you cannot call this function before the interpreter has discovered it. It also means that any code that appears up to that point could potentially alter what goes on inside this function.

IMMEDIATELY INVOKED FUNCTION EXPRESSIONS

This way of writing a function is used in several different situations. Often functions are used to ensure that the variable names do not conflict with each other (especially if the page uses more than one script).

IMMEDIATELY INVOKED FUNCTION EXPRESSIONS (IIFE)

Pronounced “iffy,” these functions are not given a name. Instead, they are executed once as the interpreter comes across them.

Below, the variable called area will hold the value returned from the function (rather than storing the function itself so that it can be called later).

[image: images]

The final parentheses (shown on green) after the closing curly brace of the code block tell the interpreter to call the function immediately. The grouping operators (shown on pink) are parentheses there to ensure the intrepreter treats this as an expression.

You may see the final parentheses in an IIFE placed after the closing grouping operator but it is commonly considered better practice to place the final parentheses before the closing grouping operator, as shown in the code above.

WHEN TO USE ANONYMOUS FUNCTIONS AND IIFES

You will see many ways in which anonymous function expressions and IIFEs are used throughout the book.

They are used for code that only needs to run once within a task, rather than repeatedly being called by other parts of the script. For example:

	As an argument when a function is called (to calculate a value for that function).

	To assign the value of a property to an object.

	In event handlers and listeners (see Chapter 6) to perform a task when an event occurs.

	To prevent conflicts between two scripts that might use the same variable names (see p99).

IIFEs are commonly used as a wrapper around a set of code. Any variables declared within that anonymous function are effectively protected from variables in other scripts that might have the same name. This is due to a concept called scope, which you meet on the next page. It is also a very popular technique with jQuery.

VARIABLE SCOPE

The location where you declare a variable will affect where it can be used within your code. If you declare it within a function, it can only be used within that function. This is known as the variable's scope.

LOCAL VARIABLES

When a variable is created inside a function using the var keyword, it can only be used in that function. It is called a local variable or function-level variable. It is said to have local scope or function-level scope. It cannot be accessed outside of the function in which it was declared. Below, area is a local variable.

The interpreter creates local variables when the function is run, and removes them as soon as the function has finished its task. This means that:

	If the function runs twice, the variable can have different values each time.

	Two different functions can use variables with the same name without any kind of naming conflict.

GLOBAL VARIABLES

If you create a variable outside of a function, then it can be used anywhere within the script. It is called a global variable and has global scope. In the example shown, wallSize is a global variable.

Global variables are stored in memory for as long as the web page is loaded into the web browser. This means they take up more memory than local variables, and it also increases the risk of naming conflicts (see next page). For these reasons, you should use local variables wherever possible.

If you forget to declare a variable using the var keyword, the variable will work, but it will be treated as a global variable (this is considered bad practice).

[image: images]

HOW MEMORY & VARIABLES WORK

Global variables use more memory. The browser has to remember them for as long as the web page using them is loaded. Local variables are only remembered during the period of time that a function is being executed.

CREATING THE VARIABLES IN CODE

Each variable that you declare takes up memory. The more variables a browser has to remember, the more memory your script requires to run. Scripts that require a lot of memory can perform slower, which in turn makes your web page take longer to respond to the user.

[image: images]

A variable actually references a value that is stored in memory. The same value can be used with more than one variable:

[image: images]

Here the values for the width and height of the wall are stored separately, but the same value of true can be used for both isWall and canPaint.

NAMING COLLISIONS

You might think you would avoid naming collisions; after all you know which variables you are using. But many sites use scripts written by several people. If an HTML page uses two JavaScript files, and both have a global variable with the same name, it can cause errors. Imagine a page using these two scripts:

[image: images]

[image: images] Variables in global scope: have naming conflicts.

[image: images] Variables in function scope: there is no conflict between them.

WHAT IS AN OBJECT?

[image: images]

Objects group together a set of variables and functions to create a model of a something you would recognize from the real world. In an object, variables and functions take on new names.

IN AN OBJECT: VARIABLES BECOME KNOWN AS PROPERTIES

If a variable is part of an object, it is called a property. Properties tell us about the object, such as the name of a hotel or the number of rooms it has. Each individual hotel might have a different name and a different number of rooms.

IN AN OBJECT: FUNCTIONS BECOME KNOWN AS METHODS

If a function is part of an object, it is called a method. Methods represent tasks that are associated with the object. For example, you can check how many rooms are available by subtracting the number of booked rooms from the total number of rooms.

This object represents a hotel. It has five properties and one method. The object is in curly braces. It is stored in a variable called hotel.

Like variables and named functions, properties and methods have a name and a value. In an object, that name is called a key.

An object cannot have two keys with the same name. This is because keys are used to access their corresponding values.

The value of a property can be a string, number, Boolean, array, or even another object. The value of a method is always a function.

[image: images]

Above you can see a hotel object. The object contains the following key/value pairs:

[image: images]

As you will see over the next few pages, this is just one of the ways you can create an object.

Programmers use a lot of name/value pairs:

	HTML uses attribute names and values.

	CSS uses property names and values.

In JavaScript:

	Variables have a name and you can assign them a value of a string, number, or Boolean.

	Arrays have a name and a group of values. (Each item in an array is a name/value pair because it has an index number and a value.)

	Named functions have a name and value that is a set of statements to run if the function is called.

	Objects consist of a set of name/value pairs (but the names are referred to as keys).

CREATING AN OBJECT: LITERAL NOTATION

Literal notation is the easiest and most popular way to create objects. (There are several ways to create objects.)

The object is the curly braces and their contents. The object is stored in a variable called hotel, so you would refer to it as the hotel object.

Separate each key from its value using a colon. Separate each property and method with a comma (but not after the last value).

[image: images]

In the checkAvailability() method, the this keyword is used to indicate that it is using the rooms and booked properties of this object.

When setting properties, treat the values like you would do for variables: strings live in quotes and arrays live in square brackets.

ACCESSING AN OBJECT AND DOT NOTATION

You access the properties or methods of an object using dot notation. You can also access properties using square brackets.

To access a property or method of an object you use the name of the object, followed by a period, then the name of the property or method you want to access. This is known as dot notation.

The period is known as the member operator. The property or method on its right is a member of the object on its left. Here, two variables are created to hold the hotel name and number of vacant rooms.

[image: images]

You can also access the properties of an object (but not its methods) using square bracket syntax.

This time the object name is followed by square brackets, and the property name is inside them.

[image: images]

This notation is used most commonly used when:

	The name of the property is a number (technically allowed, but should generally be avoided)

	A variable is being used in place of the property name (you will see this technique used in Chapter 12)

CREATING OBJECTS USING LITERAL NOTATION

[image: images]

[image: images]

This example starts by creating an object using literal notation.

This object is called hotel which represents a hotel called Quay with 40 rooms (25 of which have been booked).

Next, the content of the page is updated with data from this object. It shows the name of the hotel by accessing the object's name property and the number of vacant rooms using the checkAvailability() method.

To access a property of this object, the object name is followed by a dot (the period symbol) and the name of the property that you want.

Similarly, to use the method, you can use the object name followed by the method name. hotel.checkAvailability()

If the method needs parameters, you can supply them in the parentheses (just like you can pass arguments to a function).

CREATING MORE OBJECT LITERALS

[image: images]

[image: images]

Here you can see another object. Again it is called hotel, but this time the model represents a different hotel. For a moment, imagine that this is a different page of the same travel website.

The Park hotel is larger. It has 120 rooms and 77 of them are booked.

The only things changing in the code are the values of the hotel object's properties:

	The name of the hotel

	How many rooms it has

	How many rooms are booked

The rest of the page works in exactly the same way. The name is shown using the same code. The checkAvailability() method has not changed and is called in the same way.

If this site had 1,000 hotels, the only thing that would need to change would be the three properties of this object. Because we created a model for the hotel using data, the same code can access and display the details for any hotel that follows the same data model.

If you had two objects on the same page, you would create each one using the same notation but store them in variables with different names.

CREATING AN OBJECT: CONSTRUCTOR NOTATION

The new keyword and the object constructor create a blank object. You can then add properties and methods to the object.

First, you create a new object using a combination of the new keyword and the Object() constructor function. (This function is part of the JavaScript language and is used to create objects.)

Next, having created the blank object, you can add properties and methods to it using dot notation. Each statement that adds a property or method should end with a semicolon.

[image: images]

You can use this syntax to add properties and methods to any object you have created (no matter which notation you used to create it).

To create an empty object using literal notation use:
var hotel = {}
The curly brackets create an empty object.

UPDATING AN OBJECT

To update the value of properties, use dot notation or square brackets. They work on objects created using literal or constructor notation. To delete a property, use the delete keyword.

To update a property, use the same technique that was shown on the left-hand page to add properties to the object, but give it a new value.

If the object does not have the property you are trying to update, it will be added to the object.

[image: images]

You can also update the properties of an object (but not its methods) using square bracket syntax. The object name is followed by square brackets, and the property name is inside them.

A new value for the property is added after the assignment operator. Again, if the property you are attempting to update does not exist, it will be added to the object.

[image: images]

To delete a property, use the delete keyword followed by the object name and property name.

[image: images]

If you just want to clear the value of a property, you could set it to a blank string.

[image: images]

CREATING MANY OBJECTS: CONSTRUCTOR NOTATION

Sometimes you will want several objects to represent similar things. Object constructors can use a function as a template for creating objects. First, create the template with the object's properties and methods.

A function called Hotel will be used as a template for creating new objects that represent hotels. Like all functions, it contains statements. In this case, they add properties or methods to the object.

The function has three parameters. Each one sets the value of a property in the object. The methods will be the same for each object created using this function.

[image: images]

The this keyword is used instead of the object name to indicate that the property or method belongs to the object that this function creates.

Each statement that creates a new property or method for this object ends in a semicolon (not a comma, which is used in the literal syntax).

The name of a constructor function usually begins with a capital letter (unlike other functions, which tend to begin with a lowercase character).

The uppercase letter is supposed to help remind developers to use the new keyword when they create an object using that function (see next page).

You create instances of the object using the constructor function. The new keyword followed by a call to the function creates a new object. The properties of each object are given as arguments to the function.

Here, two objects are used to represent two hotels, so each object needs a different name. When the new keyword calls the constructor function (defined on the left-hand page), it creates a new object.

Each time it is called, the arguments are different because they are the values for the properties of each hotel. Both objects automatically get the same method defined in the constructor function.

[image: images]

The first object is called quayHotel. Its name is ‘Quay’ and it has 40 rooms, 25 of which are booked.

Even when many objects are created using the same constructor function, the methods stay the same because they access, update, or perform a calculation on the data stored in the properties.

The second object is called parkHotel. Its name is ‘Park’ and it has 120 rooms, 77 of which are booked.

You might use this technique if your script contains a very complex object that needs to be available but might not be used. The object is defined in the function, but it is only created if it is needed.

CREATING OBJECTS USING CONSTRUCTOR SYNTAX

[image: images]

[image: images]

On the right, an empty object called hotel is created using the constructor function.

Once it has been created, three properties and a method are then assigned to the object.

(If the object already had any of these properties, this would overwrite the values in those properties.)

To access a property of this object, you can use dot notation, just as you can with any object.

For example, to get the hotel's name you could use:
hotel.name

Similarly, to use the method, you can use the object name followed by the method name:
hotel.checkAvailability()

CREATE & ACCESS OBJECTS CONSTRUCTOR NOTATION

[image: images]

[image: images]

To get a better idea of why you might want to create multiple objects on the same page, here is an example that shows room availability in two hotels.

First, a constructor function defines a template for the hotels. Next, two different instances of this type of hotel object are created. The first represents a hotel called Quay and the second a hotel called Park.

Having created instances of these objects, you can then access their properties and methods using the same dot notation that you use with all other objects.

In this example, data from both objects is accessed and written into the page. (The HTML for this example changes to accommodate the extra hotel.)

For each hotel, a variable is created to hold the hotel name, followed by space, and the word rooms.

The line after it adds to that variable with the number of available rooms in that hotel.

(The += operator is used to add content to an existing variable.)

ADDING AND REMOVING PROPERTIES

[image: images]

[image: images]

Once you have created an object (using literal or constructor notation), you can add new properties to it.

You do this using the dot notation that you saw for adding properties to objects on p103.

In this example, you can see that an instance of the hotel object is created using an object literal.

Immediately after this, the hotel object is given two extra properties that show the facilities (whether or not it has a gym and/or a pool). These properties are given values that are Booleans (true or false).

Having added these properties to the object, you can access them just like any of the objects other properties. Here, they update the value of the class attribute on their respective elements to show either a check mark or a cross mark.

To delete a property, you use the keyword delete, and then use dot notation to identify the property or method you want to remove from the object.

In this case, the booked property is removed from the object.

If an object is created using a constructor function, this syntax only adds or removes the properties from the one instance of the object (not all objects created with that function).

RECAP: WAYS TO CREATE OBJECTS

CREATE THE OBJECT, THEN ADD PROPERTIES & METHODS

In both of these examples, the object is created on the first line of the code sample. The properties and methods are then added to it afterwards.

LITERAL NOTATION

var hotel = {}

hotel.name = ‘Quay’;
hotel.rooms = 40;
hotel.booked = 25;
hotel.checkAvailability = function() {
 return this.rooms - this.booked;
};

Once you have created an object, the syntax for adding or removing any properties and methods from that object is the same.

OBJECT CONSTRUCTOR NOTATION

var hotel = new Object();

hotel.name = ‘Quay’;
hotel.rooms = 40;
hotel.booked = 25;
hotel.checkAvailability = function() {
 return this.rooms - this.booked;
};

CREATING AN OBJECT WITH PROPERTIES & METHODS

LITERAL NOTATION

A colon separates the key/value pairs. There is a comma between each key/value pair.

var hotel = {
 name: ‘Quay’,
 rooms: 40,
 booked: 25,
 checkAvailability: function() {
 return this.rooms - this.booked;
 }
};

OBJECT CONSTRUCTOR NOTATION

The function can be used to create multiple objects. The this keyword is used instead of the object name.

function Hotel(name, rooms, booked) {
 this.name = name;
 this.rooms = rooms;
 this.booked = booked;
 this.checkAvailability = function() {
 return this.rooms - this.booked;
 };
}
var quayHotel = new Hotel(‘Quay’, 40, 25);
var parkHotel = new Hotel(‘Park’, 120, 77);

THIS (IT IS A KEYWORD)

The keyword this is commonly used inside functions and objects. Where the function is declared alters what this means. It always refers to one object, usually the object in which the function operates.

A FUNCTION IN GLOBAL SCOPE

When a function is created at the top level of a script (that is, not inside another object or function), then it is in the global scope or global context.

The default object in this context is the window object, so when this is used inside a function in the global context it refers to the window object.

Below, this is being used to return properties of the window object (you meet these properties on p124).

function windowSize() {
 var width = this.innerWidth;
 var height = this.innerHeight;
 return [height, width];
}

Under the hood, the this keyword is a reference to the object that the function is created inside.

GLOBAL VARIABLES

All global variables also become properties of the window object, so when a function is in the global context, you can access global variables using the window object, as well as its other properties.

Here, the showWidth() function is in global scope, and this.width refers to the width variable:

[image: images]

Here, the function would write a value of 600 into the page (using the document object's write() method).

As you can see, the value of this changes in different situations. But don't worry if you do not follow these two pages on your first read through. As you write more functions and objects, these concepts will become more familiar, and if this is not returning the value you expected, these pages will help you work out why.

Another scenario to mention is when one function is nested inside another function. It is only done in more complicated scripts, but the value of this can vary (depending on which browser you are using). You could work around this by storing the value of this in a variable in the first function and using the variable name in child functions instead of this.

A METHOD OF AN OBJECT

When a function is defined inside an object, it becomes a method. In a method, this refers to the containing object.

In the example below, the getArea() method appears inside the shape object, so this refers to the shape object it is contained in:

[image: images]

Because the this keyword here refers to the shape object, it would be the same as writing:

return shape.width * shape.height;

If you were creating several objects using an object constructor (and each shape had different dimensions), this would refer to the individual instance of the new object you are creating. When you called getArea(), it would calculate the dimensions of that particular instance of the object.

FUNCTION EXPRESSION AS METHOD

If a named function has been defined in global scope, and it is then used as a method of an object, this refers to the object it is contained within.

The next example uses the same showWidth() function expression as the one on the left-hand page, but it is assigned as a method of an object.

[image: images]

The last but one line indicates that the showWidth() function is used as a method of the shape object. The method is given a different name: getWidth().

When the getWidth() method is called, even though it uses the showWidth() function, this now refers to the shape object, not the global context (and this.width refers to the width property of the shape object). So it writes a value of 300 to the page.

RECAP: STORING DATA

In JavaScript, data is represented using name/value pairs. To organize your data, you can use an array or object to group a set of related values. In arrays and objects the name is also known as a key.

VARIABLES

A variable has just one key (the variable name) and one value.

Variable names are separated from their value by an equals sign (the assignment operator):

var hotel = ‘Quay’;

To retrieve the value of a variable, use its name:

// This retrieves Quay:
hotel;

When a variable has been declared but has not yet been assigned a value, it is undefined.

If the var keyword is not used, the variable is declared in global scope (you should always use it).

ARRAYS

Arrays can store multiple pieces of information. Each piece of information is separated by a comma. The order of the values is important because items in an array are assigned a number (called an index).

Values in an array are put in square brackets, separated by commas:

var hotels = [
 ‘Quay’,
 ‘Park’,
 ‘Beach’,
 ‘Bloomsbury’
]

You can think of each item in the array as another key/value pair, the key is the index number, and the values are shown in the comma-separated list.

To retrieve an item, use its index number:

// This retrieves Park:
hotels[1];

If a key is a number, to retrieve the value you must place the number in square brackets.

Generally speaking, arrays are the only times when the key would be a number.

Note: This recap specifically relate to storing data. You cannot store rules to perform a task in an array. They can only be stored in a function or method.

If you want to access items via a property name or key, use an object (but note that each key in the object must be unique). If the order of the items is important, use an array.

INDIVIDUAL OBJECTS

Objects store sets of name/value pairs. They can be properties (variables) or methods (functions).

The order of them is not important (unlike the array). You access each piece of data by its key.

In object literal notation, properties and methods of an object are given in curly braces:

var hotel = {
 name: ‘Quay’,
 rooms: 40
};

Objects created with literal notation are good:

	When you are storing / transmitting data between applications

	For global or configuration objects that set up information for the page

To access the properties or methods of the object, use dot notation:

// This retrieves Quay:
hotel.name;

MULTIPLE OBJECTS

When you need to create multiple objects within the same page, you should use an object constructor to provide a template for the objects.

function Hotel(name, rooms) {
 this.name = name;
 this.rooms = rooms;
}

You then create instances of the object using the new keyword and then a call to the constructor function.

var hotel1 = new Hotel(‘Quay’, 40);
var hotel2 = new Hotel(‘Park’, 120);

Objects created with constructors are good when:

	You have lots of objects used with similar functionality (e.g., multiple slideshows / media players / game characters) within a page

	A complex object might not be used in code

To access the properties or methods of the object, use dot notation:

// This retrieves Park:
hotel2.name;

ARRAYS ARE OBJECTS

Arrays are actually a special type of object. They hold a related set of key/value pairs (like all objects), but the key for each value is its index number.

As you saw (on p72), arrays have a length property telling you how many items are in the array. In Chapter 12, you will see that arrays also have several other helpful methods.

AN OBJECT

[image: images]

Here, hotel room costs are stored in an object. The example covers four rooms, and the cost for each room is a property of the object:

costs = {
 room1: 420,
 room2: 460,
 room3: 230,
 room4: 620
};

AN ARRAY

[image: images]

Here is the the same data in an array. Instead of property names, it has index numbers:

costs = [420, 460, 230, 620];

ARRAYS OF OBJECTS & OBJECTS IN ARRAYS

You can combine arrays and objects to create complex data structures: Arrays can store a series of objects (and remember their order). Objects can also hold arrays (as values of their properties).

In an object, the order in which the properties appear is not important. In an array, the index numbers dictate the order of the properties. You will see more examples of these data structures in Chapter 12.

ARRAYS IN AN OBJECT

[image: images]

The property of any object can hold an array. On the left, each item on a hotel bill is stored separately in an array. To access the first charge for room1 you would use:

costs.room1.items[0];

OBJECTS IN AN ARRAY

[image: images]

The value of any element in an array can be an object (written using the object literal syntax). Here, to access the phone charge for room three, you would use:

costs[2].phone;

WHAT ARE BUILT-IN OBJECTS?

[image: images]

Browsers come with a set of built-in objects that represent things like the browser window and the current web page shown in that window. These built-in objects act like a toolkit for creating interactive web pages.

The objects you create will usually be specifically written to suit your needs. They model the data used within, or contain functionality needed by, your script. Whereas, the built-in objects contain functionality commonly needed by many scripts.

As soon as a web page has loaded into the browser, these objects are available to use in your scripts.

These built-in objects help you get a wide range of information such as the width of the browser window, the content of the main heading in the page, or the length of text a user entered into a form field.

You access their properties or methods using dot notation, just like you would access the properties or methods of an object you had written yourself.

The first thing you need to do is get to know what tools are available. You can imagine that your new toolkit has three compartments:

WHAT DOES THIS SECTION COVER?

You have already seen how to access the properties and methods of an object, so the purpose of this section is to let you know:

	What built-in objects are available to you

	What their main properties and methods do

There will be a few examples in the remaining part of this chapter to ensure you know how to use them. Then, throughout the rest of the entire book, you will see many practical examples of how they are used in a range of situations.

WHAT IS AN OBJECT MODEL?

You have seen that an object can be used to create a model of something from the real world using data.

An object model is a group of objects, each of which represent related things from the real world. Together they form a model of something larger.

Two pages back, it was noted that an array can hold a set of objects, or that the property of an object could be an array. It is also possible for the property of an object to be another object. When an object is nested inside another object, you may hear it referred to as a child object.

THREE GROUPS OF BUILT-IN OBJECTS

USING BUILT-IN OBJECTS:

The three sets of built-in objects each offer a different range of tools that help you write scripts for web pages.

Chapter 5 is dedicated to the Document Object Model because it is needed to access and update the contents of a web page.

The other two sets of objects will be introduced in this chapter, and then you will see them used throughout the rest of the book.

This book will teach you how to use these built-in objects and what type of information you can get from each one. You will also see examples that use many of their most popular features.

We do not have space to exhaustively document every object in each of these models in this book, so you can find a list of links to online resources at:
http://javascriptbook.com/resources

BROWSER OBJECT MODEL

The Browser Object Model creates a model of the browser tab or window.

The topmost object is the window object, which represents current browser window or tab. Its child objects represent other browser features.

[image: images]

EXAMPLES

The window object's print() method will cause the browser's print dialog box to be shown:
window.print();

The screen object's width property will let you find the width of the device's screen in pixels:
window.screen.width;

You meet the window object on p124 along with some properties of the screen and history objects.

DOCUMENT OBJECT MODEL

The Document Object Model (DOM) creates a model of the current web page.

The topmost object is the document object, which represents the page as a whole. Its child objects represent other items on the page.

[image: images]

EXAMPLES

The document object's getElementById() method gets an element by the value of its id attribute:
document.getElementById(‘one’);

The document object's lastModified property will tell you the date that the page was last updated:
document.lastModified;

You meet the document object on p126. Chapter 5 goes into this object model in depth.

GLOBAL JAVASCRIPT OBJECTS

The global objects do not form a single model. They are a group of individual objects that relate to different parts of the JavaScript language.

The names of the global objects usually start with a capital letter, e.g., the String and Date objects.

These objects represent basic data types:

[image: images]

These objects help deal with real-world concepts:

[image: images]

EXAMPLES

The String object's toUpperCase() method makes all letters in the following variable uppercase:
hotel.toUpperCase();

The Math object's PI property will return the value of pi:
Math.PI();

You meet the String, Number, Date, and Math objects later in this chapter.

THE BROWSER OBJECT MODEL: THE WINDOW OBJECT

The window object represents the current browser window or tab. It is the topmost object in the Browser Object Model, and it contains other objects that tell you about the browser.

Here are a selection of the window object's properties and methods. You can also see some properties of the screen and history objects (which are children of the window object).

	PROPERTY
	DESCRIPTION

	window.innerHeight
	Height of window (excluding browser chrome/user interface) (in pixels)

	window.innerWidth
	Width of window (excluding browser chrome/user interface) (in pixels)

	window.pageXOffset
	Distance document has been scrolled horizontally (in pixels)

	window.pageYOffset
	Distance document has been scrolled vertically (in pixels)

	window.screenX
	X-coordinate of pointer, relative to top left corner of screen (in pixels)

	window.screenY
	Y-coordinate of pointer, relative to top left corner of screen (in pixels)

	window.location
	Current URL of window object (or local file path)

	window.document
	Reference to document object, which is used to represent the current page contained in window

	window.history
	Reference to history object for browser window or tab, which contains details of the pages that have been viewed in that window or tab

	window.history.length
	Number of items in history object for browser window or tab

	window.screen
	Reference to screen object

	window.screen.width
	Accesses screen object and finds value of its width property (in pixels)

	window.screen.height
	Accesses screen object and finds value of its height property (in pixels)

	METHOD
	DESCRIPTION

	window.alert()
	Creates dialog box with message (user must click OK button to close it)

	window.open()
	Opens new browser window with URL specified as parameter (if browser has pop-up blocking software installed, this method may not work)

	window.print()
	Tells browser that user wants to print contents of current page (acts like user has clicked a print option in the browser's user interface)

USING THE BROWSER OBJECT MODEL

Here, data about the browser is collected from the window object and its children, stored in the msg variable, and shown in the page. The += operator adds data onto the end of the msg variable.

1. Two of the window object's properties, innerWidth and innerHeight, show width and height of the browser window.

2. Child objects are stored as properties of their parent object. So dot notation is used to access them, just like you would access any other property of that object.

In turn, to access the properties of the child object, another dot is used between the child object's name and its properties, e.g., window.history.length

3. The element whose id attribute has a value of info is selected, and the message that has been built up to this point is written into the page.

See p228 for notes on using innerHTML because it can be a security risk if it is not used correctly.

[image: images]

[image: images]

4. The window object's alert() method is used to create a dialog box shown on top of the page. It is known as an alert box. Although this is a method of the window object, you may see it used on its own (as shown here) because the window object is treated as the default object if none is specified. (Historically, the alert() method was used to display warnings to users. These days there are better ways to provide feedback.)

THE DOCUMENT OBJECT MODEL: THE DOCUMENT OBJECT

The topmost object in the Document Object Model (or DOM) is the document object. It represents the web page loaded into the current browser window or tab. You meet its child objects in Chapter 5.

Here are some properties of the document object, which tell you about the current page.

As you will see in Chapter 5, the DOM also creates an object for each element on the page.

	PROPERTY
	DESCRIPTION

	document.title
	Title of current document

	document.lastModified
	Date on which document was last modified

	document.URL
	Returns string containing URL of current document

	document.domain
	Returns domain of current document

The DOM is vital to accessing and amending the contents of the current web page.

The following are a few of the methods that select content or update the content of a page.

	METHOD
	DESCRIPTION

	document.write()
	Writes text to document (see restrictions on p226)

	document.getElementById()
	Returns element, if there is an element with the value of the id attribute that matches (full description see p195)

	document.querySelectorAll()
	Returns list of elements that match a CSS selector, which is specified as a parameter (see p202)

	document.createElement()
	Creates new element (see p222)

	document.createTextNode()
	Creates new text node (see p222)

USING THE DOCUMENT OBJECT

This example gets information about the page, and then adds that information to the footer.

1. The details about the page are collected from properties of the document object.

These details are stored inside a variable called msg, along with HTML markup to display the information. Again, the += operator adds the new value onto the existing content of the msg variable.

2. You have seen the document object's getElementById() method in several examples so far. It selects an element from the page using the value of its id attribute. You will see this method in more depth on p195.

[image: images]

[image: images]

See p228 for notes on using innerHTML because it can be a security risk if it is not used correctly.

The URL will look very different if you run this page locally rather than on a web server. It will likely begin with file:/// rather than with http://.

GLOBAL OBJECTS: STRING OBJECT

Whenever you have a value that is a string, you can use the properties and methods of the String object on that value. This example stores the phrase “Home sweet home ” in a variable.

[image: images]

These properties and methods are often used to work with text stored in variables or objects.

On the right-hand page, note how the variable name (saying) is followed by a dot, then the property or method that is being demonstrated (like the name of an object is followed by a dot and its properties or methods).

This is why the String object is known as both a global object, because it works anywhere within your script, and a wrapper object because it acts like a wrapper around any value that is a string - you can use this object's properties and methods on any value that is a string.

The length property counts the number of “code units” in a string. In the majority of cases, one character uses one code unit, and most programmers use it like this. But some of the rarely used characters take up two code units.

Each character in a string is automatically given a number, called an index number. Index numbers always start at zero and not one (just like for items in an array).

WORKING WITH STRINGS

This example demonstrates the length property and many of the string object's methods shown on the previous page.

1. This example starts by storing the phrase “Home sweet home “in a variable called saying.

2. The next line tells you how many characters are in the string using the length property of the String object and stores the result in a variable called msg.

3. This is followed by examples showing several of the String object's methods.

The name of the variable (saying) is followed by a dot, then the property or method that is being demonstrated (in the same way that the other objects in this chapter used the dot notation to indicate a property or method of an object).

[image: images]

[image: images]

4. The final two lines select the element with an id attribute whose value is info and then add the value of the msg variable inside that element.

(Remember, security issues with using the innerHTML property are discussed on p228.)

DATA TYPES REVISITED

In JavaScript there are six data types:
Five of them are described as simple (or primitive) data types. The sixth is the object (and is referred to as a complex data type).

SIMPLE OR PRIMITIVE DATA TYPES

JavaScript has five simple (or primitive) data types:

1. String

2. Number

3. Boolean

4. Undefined (a variable that has been declared, but no value has been assigned to it yet)

5. Null (a variable with no value - it may have had one at some point, but no longer has a value)

As you have seen, both the web browser and the current document can be modeled using objects (and objects can have methods and properties).

But it can be confusing to discover that a simple value (like a string, a number, or a Boolean) can have methods and properties. Under the hood, JavaScript treats every variable as an object in its own right.

String: If a variable, or the property of an object, contains a string, you can use the properties and methods of the String object on it.

Number: If a variable, or property of an object, stores a number, you can use the properties and methods of the Number object on it (see next page).

Boolean: There is a Boolean object. It is rarely used.

(Undefined and null values do not have objects.)

COMPLEX DATA TYPE

JavaScript also defines a complex data type:

6. Object

Under the hood, arrays and functions are considered types of objects.

ARRAYS ARE OBJECTS

As you saw on p118, an array is a set of key/value pairs (just like any other object). But you do not specify the name in the key/value pair of an array - it is an index number.

Like other objects, arrays have properties and methods. On p72 you saw that arrays have a property called length, which tells you how many items are in that array. There is also a set of methods you can use with any array to add items to it, remove items from it, or reorder its contents. You will meet those methods in Chapter 12.

FUNCTIONS ARE OBJECTS

Technically, functions are also objects. But they have an additional feature: they are callable, which means you can tell the interpreter when you want to execute the statements that it contains.

GLOBAL OBJECTS: NUMBER OBJECT

Whenever you have a value that is a number, you can use the methods and properties of the Number object on it.

These methods are helpful when dealing with a range of applications from financial calculations to animations.

Many calculations involving currency (such as tax rates) will need to be rounded to a specific number of decimal places.

Or, in an animation, you might want to specify that certain elements should be evenly spaced out across the page.

	METHOD
	DESCRIPTION

	isNaN()
	Checks if the value is not a number

	toFixed()
	Rounds to specified number of decimal places (returns a string)

	toPrecision()
	Rounds to total number of places (returns a string)

	toExponential()
	Returns a string representing the number in exponential notation

COMMONLY USED TERMS:

	An integer is a whole number (not a fraction).

	A real number is a number that can contain a fractional part.

	A floating point number is a real number that uses decimals to represent a fraction. The term floating point refers to the decimal point.

	Scientific notation is a way of writing numbers that are too big or too small to be conveniently written in decimal form. For example: 3,750,000,000 can be represented as 3.75 × 109 or 3.75e+12.

WORKING WITH DECIMAL NUMBERS

As with the String object, the properties and methods of the Number object can be used with with any value that is a number.

1. In this example, a number is stored in a variable called originalNumber, and it is then rounded up or down using two different techniques.

In both cases, you need to indicate how many digits you want to round to. This is provided as a parameter in the parentheses for that method.

[image: images]

[image: images]

2. originalNumber.toFixed(3) will round the number stored in the variable originalNumber to three decimal places. (The number of decimal places is specified in the parentheses.) It will return the number as a string. It returns a string because fractions cannot always be accurately represented using floating point numbers.

2. toPrecision(3) uses the number in parentheses to indicate the total number of digits the number should have. It will also return the number as a string. (It may return a scientific notation if there are more digits than the specified number of positions.)

GLOBAL OBJECTS: MATH OBJECT

The Math object has properties and methods for mathematical constants and functions.

	PROPERTY
	DESCRIPTION

	Math.PI
	Returns pi (approximately 3.14159265359)

	METHOD
	DESCRIPTION

	Math.round()
	Rounds number to the nearest integer

	Math.sqrt(n)
	Returns square root of positive number, e.g., Math.sqrt(9) returns 3

	Math.ceil()
	Rounds number up to the nearest integer

	Math.floor()
	Rounds number down to the nearest integer

	Math.random()
	Generates a random number between 0 (inclusive) and 1 (not inclusive)

Because it is known as a global object, you can just use the name of the Math object followed by the property or method you want to access.

Typically you will then store the resulting number in a variable. This object also has many trigonometric functions such as sin(), cos(), and tan().

The trigonometric functions return angles in radians which can then be converted into degrees if you divide the number by (pi/ 180).

MATH OBJECT TO CREATE RANDOM NUMBERS

This example is designed to generate a random whole number between 1 and 10.

The Math object's random() method generates a random number between 0 and 1 (with many decimal places).

To get a random whole number between 1 and 10, you need to multiply the randomly generated number by 10.

This number will still have many decimal places, so you can round it down to the nearest integer.

The floor() method is used to specifically round a number down (rather than up or down).

This will give you a value between 0 and 9. You then add 1 to make it a number between 1 and 10.

[image: images]

[image: images]

If you used the round() method instead of the floor() method, the numbers 1 and 10 would be chosen around half of the number of times that 2-9 would be chosen.

Anything between 1.5 and 1.999 would get rounded up to 2, and anything between 9 and 9.5 would be rounded down to 9.

Using the floor() method ensures that the number is always rounded down to the nearest integer, and you can then add 1 to ensure the number is between 1 and 10.

CREATING AN INSTANCE OF THE DATE OBJECT

In order to work with dates, you create an instance of the Date object. You can then specify the time and date that you want it to represent.

To create a Date object, use the Date() object constructor. The syntax is the same for creating any object with a constructor function (see p108). You can use it to create more than one Date object.

By default, when you create a Date object it will hold today's date and the current time. If you want it to store another date, you must explicitly specify the date and time you want it to hold.

[image: images]

You can think of the above as creating a variable called today that holds a number. This is because in JavaScript, dates are stored as a number: specifically the number of milliseconds since midnight on January 1, 1970.

Note that the current date / time is determined by the computer's clock. If the user is in a different time zone than you, their day may start earlier or later than yours. Also, if the internal clock on their computer has the wrong date or time, the Date object could reflect this by holding the wrong date.

The Date() object constructor tells the JavaScript interpreter that this variable is a date, and this in turn allows you to use the Date object's methods to set and retrieve dates and times from this Date object (see right-hand page for a list of methods).

You can set the date and/or time using any of the following formats (or methods shown on the right):

var dob = new Date(1996, 11, 26, 15, 45, 55);
var dob = new Date(‘Dec 26, 1996 15:45:55’);
var dob = new Date(1996, 11, 26);

GLOBAL OBJECTS: DATE OBJECT (AND TIME)

Once you have created a Date object, the following methods let you set and retrieve the time and date that it represents.

[image: images]

The toDateString() method will display the date in the following format:
Wed Apr 16 1975.

If you want to display the date in another way, you can construct a different date format using the individual methods listed above to represent the individual parts: day, date, month, year.

toTimeString() shows the time. Several programming languages specify dates in milliseconds since midnight on Jan 1, 1970. This is known as Unix time.

A visitor's location may affect time zones and language spoken. Programmers use the term locale to refer to this kind of location-based information.

The Date object does not store the names of days or months as they vary between languages.

Instead, it uses a number from 0 to 6 for the days of the week and 0 to 11 for the months.

To show their names, you need to create an array to hold them (see p143).

CREATING A DATE OBJECT

1. In this example, a new Date object is created using the Date() object constructor It is called today.

If you do not specify a date when creating a Date object, it will contain the date and time when the JavaScript interpreter encounters that line of code.

Once you have an instance of the Date object (holding the current date and time), you can use any of its properties or methods.

[image: images]

[image: images]

2. In this example, you can see that getFullYear() is used to return the year of the date being stored in the Date object.

3. In this case, it is being used to write the current year in a copyright statement.

WORKING WITH DATES & TIMES

To specify a date and time, you can use this format:

YYYY, MM, DD, HH, MM, SS
1996, 04, 16, 15, 45, 55

This represents 3:45pm and 55 seconds on April 16, 1996.

The order and syntax for this is:

	Year
	four digits

	Month
	0-11 (Jan is 0)

	Day
	1-31

	Hour
	0-23

	Minutes
	0-59

	Seconds
	0-59

	Milliseconds
	0-999

Another way to format the date and time is like this:

MMM DD, YYYY HH:MM:SS
Apr 16, 1996 15:45:55

You can omit the time portion if you do not need it.

[image: images]

[image: images]

1. In this example, you can see a date being set in the past.

2. If you try to find the difference between two dates, you will end up with a result in milliseconds.

3. To get the difference in days/weeks/years, you divide this number by the number of milliseconds in a day/week/year.

Here the number is divided by 31,556,900,000 - the number of milliseconds in a year (that is not a leap year).

[image: images]

EXAMPLE
FUNCTIONS, METHODS & OBJECTS

This example is split into two parts. The first shows you the details about the hotel, room rate, and offer rate. The second part indicates when the offer expires.

All of the code is placed inside an immediately invoked function expression (IIFE) to ensure any variable names used in the script do not clash with variable names used in other scripts.

The first part of the script creates a hotel object; it has three properties (the hotel name, room rate, and percentage discount being offered), plus a method to calculate the offer price which is shown to the user.

The details of the discount are written into the page using information from this hotel object. To ensure that the discounted rate is shown with two decimal places (like most prices are shown) the .toFixed() method of the Number object is used.

The second part of the script shows that the offer will expire in seven days. It does this using a function called offerExpires(). The date currently set on the user's computer is passed as an argument to the offerExpires() function so that it can calculate when the offer ends.

Inside the function, a new Date object is created; and seven days is added to today's date. The Date object represents the days and months as numbers (starting at 0) so - to show the name of the day and month - two arrays are created storing all possible day and month names. When the message is written, it retrieves the appropriate day/month from those arrays.

The message to show the expiry date is built up inside a variable called expiryMsg. The code that calls the offerExpires() function and displays the message is at the end of the script. It selects the element where the message should appear and updates its content using the innerHTML property, which you will meet in Chapter 5.

[image: images]

If you read the comments in the code, you can see how this example works.

[image: images]

[image: images] This symbol indicates that the code is wrapping from the previous line and should not contain line breaks.

This is a good demonstration of several concepts relating to date, but if the user has the wrong date on their computer (perhaps their clock is set incorrectly), it will not show a date seven days from now - it will show a date seven days from the time the computer thinks it is.

SUMMARY

FUNCTIONS, METHODS & OBJECTS

	Functions allow you to group a set of related statements together that represent a single task.

	Functions can take parameters (information required to do their job) and may return a value.

	An object is a series of variables and functions that represent something from the world around you.

	In an object, variables are known as properties of the object; functions are known as methods of the object.

	Web browsers implement objects that represent both the browser window and the document loaded into the browser window.

	JavaScript also has several built-in objects such as String, Number, Math, and Date. Their properties and methods offer functionality that help you write scripts.

	Arrays and objects can be used to create complex data sets (and both can contain the other).

 4

DECISIONS & LOOPS

Looking at a flowchart (for all but the most basic scripts), the code can take more than one path, which means the browser runs different code in different situations. In this chapter, you will learn how to create and control the flow of data in your scripts to handle different situations.

Scripts often need to behave differently depending upon how the user interacts with the web page and/or the browser window itself. To determine which path to take, programmers often rely upon the following three concepts:

EVALUATIONS

You can analyze values in your scripts to determine whether or note they match expected results.

DECISIONS

Using the results of evaluations, you can decide which path your script should go down.

LOOPS

There are also many occasions where you will want to perform the same set of steps repeatedly.

[image: images]

DECISION MAKING

There are often several places in a script where decisions are made that determine which lines of code should be run next. Flowcharts can help you plan for these occasions.

In a flowchart, the diamond shape represents a point where a decision must be made and the code can take one of two different paths. Each path is made up of a different set of tasks, which means you have to write different code for each situation.

In order to determine which path to take, you set a condition. For example, you can check that one value is equal to another, greater than another, or less than another. If the condition returns true, you take one path; if it is false, you take another path.

[image: images]

In the same way that there are operators to do basic math, or to join two strings, there are comparison operators that allow you to compare values and test whether a condition is met or not.

Examples of comparison operators include the greater than (>) and less than (<) symbols, and double equals sign (==) which checks whether two values are the same.

EVALUATING CONDITIONS & CONDITIONAL STATEMENTS

There are two components to a decision:
1: An expression is evaluated, which returns a value
2: A conditional statement says what to do in a given situation

EVALUATION OF A CONDITION

In order to make a decision, your code checks the current status of the script. This is commonly done by comparing two values using a comparison operator which returns a value of true or false.

CONDITIONAL STATEMENTS

A conditional statement is based on a concept of if/then/else; if a condition is met, then your code executes one or more statements, else your code does something different (or just skips the step).

[image: images]

WHAT THIS IS SAYING:

if the condition returns true execute the statements between the first set of curly brackets otherwise execute the statements between the second set of curly brackets

(You will also meet truthy and falsy values on p167. They are treated as if true or false.)

You can also multiple conditions by combining two or more comparison operators. For example, you can check whether two conditions are both met, or if just one of several conditions is met.

Over the next few pages, you will meet several permutations of the if… statements, and also a statement called a switch statement. Collectively, these are known as conditional statements.

COMPARISON OPERATORS: EVALUATING CONDITIONS

You can evaluate a situation by comparing one value in the script to what you expect it might be. The result will be a Boolean: true or false.

[image: images]

This operator compares two values (numbers, strings, or Booleans) to see if they are the same.

‘Hello’ == ‘Goodbye’ returns false
because they are not the same string.
‘Hello’ == ‘Hello’ returns true
because they are the same string.

It is usually preferable to use the strict method:

[image: images]

This operator compares two values (numbers, strings, or Booleans) to see if they are not the same.

‘Hello’ != ‘Goodbye’ returns true
because they are not the same string.
‘Hello’ != ‘Hello’ returns false
because they are the same string.

It is usually preferable to use the strict method:

[image: images]

This operator compares two values to check that both the data type and value are the same.

‘3’ === 3 returns false
because they are not the same data type or value.
‘3’ === ‘3’ returns true
because they are the same data type and value.

[image: images]

This operator compares two values to check that both the data type and value are not the same.

‘3’ !== 3 returns true
because they are not the same data type or value.
‘3’ !== ‘3’ returns false
because they are the same data type and value.

Programmers refer to the testing or checking of a condition as evaluating the condition. Conditions can be much more complex than those shown here, but they usually result in a value of true or false.

There are a couple of notable exceptions: i) Every value can be treated as true or false even if it is not a Boolean true or false value (see p167). ii) In short-circuit evaluation, a condition might not need to run (see p169).

[image: images]

This operator checks if the number on the left is greater than the number on the right.

4 > 3 returns true
3 > 4 returns false

[image: images]

This operator checks if the number on the left is less than the number on the right.

4 < 3 returns false
3 < 4 returns true

[image: images]

This operator checks if the number on the left is greater than or equal to the number on the right.

4 >= 3 returns true
3 >= 4 returns false
3 >= 3 returns true

[image: images]

This operator checks if the number on the left is less than or equal to the number on the right.

4 <= 3 returns false
3 <= 4 returns true
3 <= 3 returns true

STRUCTURING COMPARISON OPERATORS

In any condition, there is usually one operator and two operands. The operands are placed on each side of the operator. They can be values or variables. You often see expressions enclosed in brackets.

[image: images]

If you remember back to Chapter 2, this is an example of an expression because the condition resolves into a single value: in this case it will be either true or false.

The enclosing brackets are important when the expression is used as a condition in a comparison operator. But when you are assigning a value to a variable, they are not needed (see right-hand page).

USING COMPARISON OPERATORS

[image: images]

[image: images]

At the most basic level, you can evaluate two variables using a comparison operator to return a true or false value.

In this example, a user is taking a test, and the script tells the user whether they have passed this round of the test.

The example starts by setting two variables:
1. pass to hold the pass mark
2. score to hold the users score

To see if the user has passed, a comparison operator checks whether score is greater than or equal to pass. The result will be true or false, and is stored in a variable called hasPassed. On the next line, the result is written to the screen.

The last two lines select the element whose id attribute has a value of answer, and then updates its contents. You will learn more about this technique in the next chapter.

USING EXPRESSIONS WITH COMPARISON OPERATORS

The operand does not have to be a single value or variable name. An operand can be an expression (because each expression evaluates into a single value).

[image: images]

COMPARING TWO EXPRESSIONS

In this example, there are two rounds to the test and the code will check if the user has achieved a new high score, beating the previous record.

The script starts by storing the user's scores for each round in variables. Then the highest scores for each round are stored in two more variables.

The comparison operator checks if the user's total score is greater than the highest score for the test and stores the result in a variable called comparison.

[image: images]

[image: images]

In the comparison operator, the operand on the left calculates the user's total score. The operand on the right adds together the highest scores for each round. The result is then added to the page.

When you assign the result of the comparison to a variable, you do not strictly need the containing parentheses (shown in white on the left-hand page).

Some programmers use them anyway to indicate that the code evaluates into a single value. Others only use containing parentheses when they form part of a condition.

LOGICAL OPERATORS

Comparison operators usually return single values of true or false. Logical operators allow you to compare the results of more than one comparison operator.

[image: images]

In this one line of code are three expressions, each of which will resolve to the value true or false.

The expressions on the left and the right both use comparison operators, and both return false.

The third expression uses a logical operator (rather than a comparison operator). The logical AND operator checks to see whether both expressions on either side of it return true (in this case they do not, so it evaluates to false).

[image: images]

This operator tests more than one condition.

((2 < 5) && (3 >= 2))
returns true

If both expressions evaluate to true then the expression returns true. If just one of these returns false, then the expression will return false.

true && true returns true
true && false returns false
false && true returns false
false && false returns false

[image: images]

This operator tests at least one condition.

((2 < 5) || (2 < 1))
returns true

If either expression evaluates to true, then the expression returns true. If both return false, then the expression will return false.

 true || true returns true
 true || false returns true
false || true returns true
false || false returns false

[image: images]

This operator takes a single Boolean value and inverts it.

!(2 < 1)
returns true

This reverses the state of an expression. If it was false (without the ! before it) it would return true. If the statement was true, it would return false.

!true returns false
!false returns true

SHORT-CIRCUIT EVALUATION

Logical expressions are evaluated left to right. If the first condition can provide enough information to get the answer, then there is no need to evaluate the second condition.

false && anything
 ^
 it has found a false

There is no point continuing to determine the other result. They cannot both be true.

true || anything
 ^
 it has found a true

There is no point continuing because at least one of the values is true.

USING LOGICAL AND

In this example, a math test has two rounds. For each round there are two variables: one holds the user's score for that round; the other holds the pass mark for that round.

The logical AND is used to see if the user's score is greater than or equal to the pass mark in both of the rounds of the test. The result is stored in a variable called passBoth.

The example finishes off by letting the user know whether or not they have passed both rounds.

[image: images]

[image: images]

It is rare that you would ever write the Boolean result into the page (like we are doing here). As you will see later in the chapter, it is more likely that you would check a condition, and if it is true, run other statements.

USING LOGICAL OR & LOGICAL NOT

Here is the same test but this time using the logical OR operator to find out if the user has passed at least one of the two rounds. If they pass just one round, they do not need to retake the test.

Look at the numbers stored in the four variables at the start of the example. The user has passed both rounds, so the minPass variable will hold the Boolean value of true.

Next, the message is stored in a variable called msg. At the end of the message, the logical NOT will invert the result of the Boolean variable so it is false. It is then written into the page.

[image: images]

[image: images]

IF STATEMENTS

The if statement evaluates (or checks) a condition. If the condition evaluates to true, any statements in the subsequent code block are executed.

[image: images]

If the condition evaluates to true, the following code block (the code in the next set of curly braces) is executed.

If the condition resolves to false, the statements in that code block are not run. (The script continues to run from the end of the next code block.)

USING IF STATEMENTS

[image: images]

[image: images]

[image: images]

In this example, the if statement is checking if the value currently held in a variable called score is 50 or more.

In this case, the statement evaluates to true (because the score is 75, which is greater than 50). Therefore, the contents of the statements within the subsequent code block are run, creating a message that congratulates the user and tells them to proceed.

After the code block, the message is written to the page.

If the value of the score variable had been less than 50, the statements in the code block would not have run, and the code would have continued on to the next line after the code block.

On the left is an alternative version of the same example that demonstrates how lines of code do not always run in the order you expect them to. If the condition is met then:

1. The first statement in the code block calls the congratulate() function.

2. The code within the congratulate() function runs.

3. The second line within the if statement's code block runs.

IF…ELSE STATEMENTS

The if…else statement checks a condition. If it resolves to true the first code block is executed. If the condition resolves to false the second code block is run instead.

[image: images]

USING IF…ELSE STATEMENTS

[image: images]

[image: images]

Here you can see that an if…else statement allows you to provide two sets of code:

1. one set if the condition evaluates to true

2. another set if the condition is false

In this test, there are two possible outcomes: a user can either get a score equal to or greater than the pass mark (which means they pass), or they can score less than the pass mark (which means they fail). One response is required for each eventuality. The response is then written to the page.

Note that the statements inside an if statement should be followed by a semicolon, but there is no need to place one after the closing curly brace of the code blocks.

An if statement only runs a set of statements if the condition is true:

[image: images]

An if…else statement runs one set of code if the condition is true or a different set if it is false:

[image: images]

SWITCH STATEMENTS

A switch statement starts with a variable called the switch value. Each case indicates a possible value for this variable and the code that should run if the variable matches that value.

Here, the variable named level is the switch value. If the value of the level variable is the string One, then the code for the first case is executed. If it is Two, the second case is executed. If it is Three, the third case is executed. If it is none of these, the code for the default case is executed.

The entire statement lives in one code block (set of curly braces), and a colon separates the option from the statements that are to be run if the case matches the switch value.

At the end of each case is the break keyword. It tells the JavaScript interpreter that it has finished with this switch statement and to proceed to run any subsequent code that appears after it.

[image: image]

IF…ELSE

	There is no need to provide an else option. (You can just use an if statement.)

	With a series of if statements, they are all checked even if a match has been found (so it performs more slowly than switch).

VS.

SWITCH

	You have a default option that is run if none of the cases match.

	If a match is found, that code is run; then the break statement stops the rest of the switch statement running (providing better performance than multiple if statements).

USING SWITCH STATEMENTS

[image: images]

[image: images]

In this example, the purpose of the switch statement is to present the user with a different message depending on which level they are at. The message is stored in a variable called msg.

The variable called level contains a number indicating which level the user is on. This is then used as the switch value. (The switch value could also be an expression.)

In the following code block (inside the curly braces), there are three options for what the value of the level variable might be: the numbers 1, 2, or 3.

If the value of the level variable is the number 1, the value of the msg variable is set to ‘Good luck on the first test’.

If the value is 2, it will read: ‘Second of three - keep going!’

If the value is 3, the message will read: ‘Final round, almost there!’

If no match is found, then the value of the msg variable is set to ‘Good luck!’

Each case ends with the break keyword which will tell the JavaScript interpreter to skip the rest of this code block and continue onto the next.

TYPE COERCION & WEAK TYPING

If you use a data type JavaScript did not expect, it tries to make sense of the operation rather than report an error.

JavaScript can convert data types behind the scenes to complete an operation. This is known as type coercion. For example, a string ‘1’ could be converted to a number 1 in the following expression: (‘1’ > 0). As a result, the above expression would evaluate to true.

JavaScript is said to use weak typing because the data type for a value can change. Some other languages require that you specify what data type each variable will be. They are said to use strong typing.

Type coercion can lead to unexpected values in your code (and also cause errors). Therefore, when checking if two values are equal, it is considered better to use strict equals operators === and !== rather than == and != as these strict operators check that the value and data types match.

	DATA TYPE
	PURPOSE

	string
	Text

	number
	Number

	Boolean
	true or false

	null
	Empty value

	undefined
	Variable has been declared but not yet assigned a value

NaN is a value that is counted as a number. You may see it when a number is expected, but is not returned, e.g., (‘ten’/2) results in NaN.

TRUTHY & FALSY VALUES

Due to type coercion, every value in JavaScript can be treated as if it were true or false; and this has some interesting side effects.

FALSY VALUES

	VALUE
	DESCRIPTION

	var highScore = false;
	The traditional Boolean false

	var highScore = 0;
	The number zero

	var highScore = ‘’;
	NaN (Not a Number)

	var highScore = 10/‘score‘;
	Empty value

	var highScore;
	A variable with no value assigned to it

Almost everything else evaluates to truthy…

TRUTHY VALUES

	VALUE
	DESCRIPTION

	var highScore = true;
	The traditional Boolean true

	var highScore = 1;
	Numbers other than zero

	var highScore = ‘carrot’;
	Strings with content

	var highScore = 10/5;
	Number calculations

	var highScore = ‘true’;
	true written as a string

	var highScore = ‘0’;
	Zero written as a string

	var highScore = ‘false’;
	false written as a string

Falsy values are treated as if they are false. The table to the left shows a highScore variable with a series of values, all of which are falsy.

Falsy values can also be treated as the number 0.

Truthy values are treated as if they are true. Almost everything that is not in the falsy table can be treated as if it were true.

Truthy values can also be treated as the number 1.

In addition, the presence of an object or an array is usually considered truthy, too. This is commonly used when checking for the presence of an element in a page.

The next page will explain more about why these concepts are important.

CHECKING EQUALITY & EXISTENCE

Because the presence of an object or array can be considered truthy, it is often used to check for the existence of an element within a page.

A unary operator returns a result with just one operand. Here you can see an if statement checking for the presence of an element. If the element is found, the result is truthy, so the first set of code is run. If it is not found, the second set is run instead.

if (document.getElementById(‘header’)) {
 // Found: do something
} else {
 // Not found: do something else
}

Those new to JavaScript often think the following would do the same:
if (document.getElementById(‘header’) == true)
but document.getElementById(‘header’) would return an object which is a truthy value but it is not equal to a Boolean value of true.

Because of type coercion, the strict equality operators === and !== result in fewer unexpected values than == and != do.

If you use == the following values can be considered equal: false, 0, and ‘’ (empty string). However, they are not equivalent when using the strict operators.

[image: images]

Although null and undefined are both falsy, they are not equal to anything other than themselves. Again, they are not equivalent when using strict operators.

[image: images]

Although NaN is considered falsy, it is not equivalent to anything; it is not even equivalent to itself (since NaN is an undefinable number, two cannot be equal).

[image: images]

SHORT CIRCUIT VALUES

Logical operators are processed left to right. They short-circuit (stop) as soon as they have a result - but they return the value that stopped the processing (not necessarily true or false).

On line 1, the variable artist is given a value of Rembrandt.
On line 2, if the variable artist has a value, then artistA will be given the same value as artist (because a non-empty string is truthy).
var artist = ‘Rembrandt’;
var artistA = (artist || ‘Unknown’);

If the string is empty (see below), artistA becomes a string ‘Unknown’.
var artist = ‘‘;
var artistA = (artist || ‘Unknown’);

You could even create an empty object if artist does not have a value:
var artist = ‘’;
var artistA = (artist || {});

Here are three values. If any one of them is considered truthy, the code inside the if statement will execute. When the script encounters valueB in the logical operator, it will short circuit because the number 1 is considered truthy and the subsequent code block is executed.

valueA = 0;
valueB = 1;
valueC = 2;

if (valueA || valueB || valueC) {
 // Do something here
}

This technique could also be used to check for the existence of elements within a page, as shown on p168.

Logical operators will not always return true or false, because:

	They return the value that stopped processing.

	That value might have been treated as truthy or falsy although it was not a Boolean.

Programmers use this creatively (for example, to set values for variables or even create objects).

As soon as a truthy value is found, the remaining options are not checked. Therefore, experienced programmers often:

	Put the code most likely to return true first in OR operations, and false answers first in AND operations.

	Place the options requiring the most processing power last, just in case another value returns true and they do not need to be run.

LOOPS

Loops check a condition. If it returns true, a code block will run. Then the condition will be checked again and if it still returns true, the code block will run again. It repeats until the condition returns false. There are three common types of loops:

FOR

If you need to run code a specific number of times, use a for loop. (It is the most common loop.) In a for loop, the condition is usually a counter which is used to tell how many times the loop should run.

WHILE

If you do not know how many times the code should run, you can use a while loop. Here the condition can be something other than a counter, and the code will continue to loop for as long as the condition is true.

DO WHILE

The do…while loop is very similar to the while loop, but has one key difference: it will always run the statements inside the curly braces at least once, even if the condition evaluates to false.

[image: images]

This is a for loop. The condition is a counter that counts to ten. The result would write “0123456789” to the page.

If the variable i is less than ten, the code inside the curly braces is executed. Then the counter is incremented.

The condition is checked again, if i is less than ten it runs again. The next three pages show how this loop works in greater detail.

LOOP COUNTERS

A for loop uses a counter as a condition. This instructs the code to run a specified number of times. Here you can see the condition is made up of three statements:

INITIALIZATION

Create a variable and set it to 0. This variable is commonly called i, and it acts as the counter.

[image: images]

The variable is only created the first time the loop is run. (You may also see the variable called index, rather than just i.)

You will sometimes see this variable declared before the condition. The following is the same and it is mainly a preference of the coder.

var i;
for (i = 0; i < 10; i++) {
 // Code goes here
}

CONDITION

The loop should continue to run until the counter reaches a specified number.

[image: images]

The value of i was initially set to 0, so in this case the loop will run 10 times before stopping.

The condition may also use a variable that holds a number. If a variable called rounds held the number of rounds in a test and the loop ran once for each round, the condition would be:

var rounds = 3;
i < (rounds);

UPDATE

Every time the loop has run the statements in the curly braces, it adds one to the counter.

[image: images]

One is added to the counter using the increment (++) operator.

Another way of reading this is that it says, “Take the variable i, and add one using the ++ operator.”

It is also possible for loops to count downwards using the decrement operator (--).

LOOPING

[image: images]

The first time the loop is run, the variable i (the counter) is assigned a value of zero.

Every time the loop is run, the condition is checked. Is the variable i less than 10?

Then the code inside the loop (the statements between the curly brackets) is run.

The variable i can be used inside the loop. Here it is used to write a number to the page.

When the statements have finished, the variable i is incremented by 1.

When the condition is no longer true, the loop ends. The script moves to the next line of code.

KEY LOOP CONCEPTS

Here are three points to consider when you are working with loops. Each is illustrated in examples on the following three pages.

KEYWORDS

You will commonly see these two keywords used with loops:

break

This keyword causes the termination of the loop and tells the interpreter to go onto the next statement of code outside of the loop. (You may also see it used in functions.)

continue

This keyword tells the interpreter to continue with the current iteration, and then check the condition again. (If it is true, the code runs again.)

LOOPS & ARRAYS

Loops are very helpful when dealing with arrays if you want to run the same code for each item in the array.

For example, you might want to write the value of each item stored in an array into the page.

You may not know how many items will be in an array when writing a script, but, when the code runs, it can check the total number of items in a loop. That figure can then be used in the counter to control how many times a set of statements is run.

Once the loop has run the right number of times, the loop stops.

PERFORMANCE ISSUES

It is important to remember that when a browser comes across JavaScript, it will stop doing anything else until it has processed that script.

If your loop is dealing with only a small number of items, this will not be an issue. If, however, your loop contains a lot of items, it can make the page slower to load.

If the condition never returns false, you get what is commonly referred to as an infinite loop. The code will not stop running until your browser runs out of memory (breaking your script).

Any variable you can define outside of the loop and that does not change within the loop should be defined outside of it. If it were declared inside the loop, it would be recalculated every time the loop ran, needlessly using resources.

USING FOR LOOPS

[image: images]

[image: images]

A for loop is often used to loop through the items in an array.

In this example, the scores for each round of a test are stored in an array called scores.

The total number of items in the array is stored in a variable called arrayLength. This number is obtained using the length property of the array.

There are three more variables: roundNumber holds the round of the test; msg holds the message to display; i is the counter (declared outside the loop).

The loop starts with the for keyword, then contains the condition inside the parentheses. As long as the counter is less than the total number of items in the array, the contents of the curly braces will continue to run. Each time the loop runs, the round number is increased by 1.

Inside the curly braces are rules that write the round number and the score to the msg variable. The variables declared outside of the loop are used within the loop.

The msg variable is then written into the page. It contains HTML so the innerHTML property is used to do this. Remember, p228 will talk about security issues relating to this property.

The counter and array both start from 0 (rather than 1). So, within the loop, to select the current item from the array, you use the counter variable i to specify the item from the array, e.g., scores[i]. But remember that it is a number lower then you might expect (e.g., first iteration is 0, second is 1).

USING WHILE LOOPS

[image: images]

[image: images]

Here is an example of a while loop. It writes out the 5 times table. Each time the loop is run, another calculation is written into the variable called msg.

This loop will continue to run for as long as the condition in the parentheses is true. That condition is a counter indicating that, as long as the variable i remains less than 10, the statements in the subsequent code block should run.

Inside the code block there are two statements:

The first statement uses the += operator, which is used to add new content to the msg variable. Each time the loop runs, a new calculation and line break is added to the end of the message being stored in it. So += works as a shorthand for writing: msg = msg + ‘new msg’ (See bottom of the next page for a breakdown of this statement.)

The second statement increments the counter variable by one. (This is done inside the loop rather than with the condition.)

When the loop has finished, the interpreter goes to the next line of code, which writes the msg variable to the page.

In this example, the condition specifies that the code should run nine times. A more typical use of a while loop would be when you do not know how many times you want the code to run. It should continue to run as long as a condition is met.

USING DO WHILE LOOPS

[image: images]

[image: images]

The key difference between a while loop and a do while loop is that the statements in the code block come before the condition. This means that those statements are run once whether or not the condition is met.

If you take a look at the condition, it is checking that the value of the variable called i is less than 1, but that variable has already been set to a value of 1.

Therefore, in this example the result is that the 5 times table is written out once, even though the counter is not less than 1.

Some people like to write while on a separate line from the closing curly brace before it.

Breaking down the first statement in these examples:

[image: images]

1. Take variable called msg

2. Add to the following to its value

3. The number in the counter

4. Write out the string × 5 =

5. The counter multiplied by 5

6. Add a line break

[image: images]

EXAMPLE

DECISIONS & LOOPS

In this example, the user can either be shown addition or multiplication of a given number. The script demonstrates the use of both conditional logic and loops.

The example starts with two variables:

1. number holds the number that the calculations will be performed with (in this case it is the number 3)

2. operator indicates whether it should be addition or multiplication (in this case it is performing addition)

An if…else statement is used to decide whether to perform addition or multiplication with the number. If the variable called operator has the value addition, the numbers will be added together; otherwise they will be multiplied.

Inside the conditional statement, a while loop is used to calculate the results. It will run 10 times because the condition is checking whether the value of the counter is less than 11.

[image: images]

The HTML for this example is very slightly different than the other examples in this chapter because there is a blackboard which the table is written onto.

You can see the script is added to the page just before the closing </body> tag.

[image: images]

If you read the comments in the code, you can see how this example works. The script starts by declaring four variables and setting values for them.

Then, an if statement checks whether the value of the variable called operator is addition. If it is, it uses a while loop to perform the calculations and store the results in a variable called msg.

If you change the value of the operator variable to anything other than addition, the conditional statement will select the second set of statements. These also contain a while loop, but this time it will perform multiplication (rather than addition).

When one of the loops has finished running, the last two lines of the script select the element whose id attribute has a value of blackboard, and updates the the page with the content of the msg variable.

SUMMARY

DECISIONS & LOOPS

	Conditional statements allow your code to make decisions about what to do next.

	Comparison operators (===, ! ==, ==, ! =, <, >, <=, =>) are used to compare two operands.

	Logical operators allow you to combine more than one set of comparison operators.

	if…else statements allow you to run one set of code if a condition is true, and another if it is false.

	switch statements allow you to compare a value against possible outcomes (and also provides a default option if none match).

	Data types can be coerced from one type to another.

	All values evaluate to either truthy or falsy.

	There are three types of loop: for, while, and do…while. Each repeats a set of statements.

 5

DOCUMENT OBJECT MODEL

The Document Object Model (DOM) specifies how browsers should create a model of an HTML page and how JavaScript can access and update the contents of a web page while it is in the browser window.

The DOM is neither part of HTML, nor part of JavaScript; it is a separate set of rules. It is implemented by all major browser makers, and covers two primary areas:

MAKING A MODEL OF THE HTML PAGE

When the browser loads a web page, it creates a model of the page in memory.

The DOM specifies the way in which the browser should structure this model using a DOM tree.

The DOM is called an object model because the model (the DOM tree) is made of objects.

Each object represents a different part of the page loaded in the browser window.

ACCESSING AND CHANGING THE HTML PAGE

The DOM also defines methods and properties to access and update each object in this model, which in turn updates what the user sees in the browser.

You will hear people call the DOM an Application Programming Interface (API). User interfaces let humans interact with programs; APIs let programs (and scripts) talk to each other. The DOM states what your script can ask the browser about the current page, and how to tell the browser to update what is being shown to the user.

[image: images]

THE DOM TREE IS A MODEL OF A WEB PAGE

As a browser loads a web page, it creates a model of that page. The model is called a DOM tree, and it is stored in the browsers’ memory. It consists of four main types of nodes.

BODY OF HTML PAGE

<html>
 <body>
 <div id=“page”>
 <h1 id=“header”>List</h1>
 <h2>Buy groceries</h2>

 <li id=“one” class=“hot”>fresh figs
 <li id=“two” class=“hot”>pine nuts
 <li id=“three” class=“hot”>honey
 <li id=“four”>balsamic vinegar

 <script src=“js/list.js”></script>
 </div>
 </body>
</html>

[image: images] THE DOCUMENT NODE

Above, you can see the HTML code for a shopping list, and on the right hand page is its DOM tree. Every element, attribute, and piece of text in the HTML is represented by its own DOM node. At the top of the tree a document node is added; it represents the entire page (and also corresponds to the document object, which you first met on p36).

When you access any element, attribute, or text node, you navigate to it via the document node. It is the starting point for all visits to the DOM tree.

[image: images] ELEMENT NODES

HTML elements describe the structure of an HTML page. (The <h1> - <h6> elements describe what parts are headings; the <p> tags indicate where paragraphs of text start and finish; and so on.)

To access the DOM tree, you start by looking for elements. Once you find the element you want, then you can access its text and attribute nodes if you want to. This is why you start by learning methods that allow you to access element nodes, before learning to access and alter text or attributes.

Note: We will continue to use this list example throughout this chapter and the next two chapters so that you can see how different techniques allow you to access and update the web page (which is represented by this DOM tree).

Relationships between the document and all of the element nodes are described using the same terms as a family tree: parents, children, siblings, ancestors, and descendants. (Every node is a descendant of the document node.)

Each node is an object with methods and properties. Scripts access and update this DOM tree (not the source HTML file). Any changes made to the DOM tree are reflected in the browser.

[image: images]

[image: images] ATTRIBUTE NODES

The opening tags of HTML elements can carry attributes and these are represented by attribute nodes in the DOM tree.

Attribute nodes are not children of the element that carries them; they are part of that element. Once you access an element, there are specific JavaScript methods and properties to read or change that element's attributes. For example, it is common to change the values of class attributes to trigger new CSS rules that affect their presentation.

[image: images] TEXT NODES

Once you have accessed an element node, you can then reach the text within that element. This is stored in its own text node.

Text nodes cannot have children. If an element contains text and another child element, the child element is not a child of the text node but rather a child of the containing element. (See the element on the first item.) This illustrates how the text node is always a new branch of the DOM tree, and no further branches come off of it.

WORKING WITH THE DOM TREE

Accessing and updating the DOM tree involves two steps:
1: Locate the node that represents the element you want to work with.
2: Use its text content, child elements, and attributes.

STEP 1: ACCESS THE ELEMENTS

Here is an overview of the methods and properties that access elements covered on p192 - p211.
The first two columns are known as DOM queries. The last column is known as traversing the DOM.

SELECT AN INDIVIDUAL ELEMENT NODE

[image: images]

Here are three common ways to select an individual element:

getElementById()
Uses the value of an element's id attribute (which should be unique within the page). See p195

querySelector()
Uses a CSS selector, and returns the first matching element. See p202

You can also select individual elements by traversing from one element to another within the DOM tree (see third column).

SELECT MULTIPLE ELEMENTS (NODELISTS)

[image: images]

There are three common ways to select multiple elements.

getElementsByClassName()
Selects all elements that have a specific value for their class attribute. See p200

getElementsByTagName()
Selects all elements that have the specified tag name. See p201

querySelectorAll()
Uses a CSS selector to select all matching elements. See p202

TRAVERSING BETWEEN ELEMENT NODES

[image: images]

You can move from one element node to a related element node.

parentNode
Selects the parent of the current element node (which will return just one element). See p208

previousSibling / nextSibling
Selects the previous or next sibling from the DOM tree. See p210

firstChild / lastChild
Select the first or last child of the current element. See p211

Throughout the chapter you will see notes where DOM methods only work in certain browsers or are buggy. Inconsistent browser support for the DOM was a key reason why jQuery became so popular.

The terms elements and element nodes are used interchangeably but when people say the DOM is working with an element, it is actually working with a node that represents that element.

STEP 2: WORK WITH THOSE ELEMENTS

Here is an overview of methods and properties that work with the elements introduced on p186.

ACCESS / UPDATE TEXT NODES

[image: images]

The text inside any element is stored inside a text node. To access the text node above:

1. Select the element

2. Use the firstChild property to get the text node

3. Use the text node's only property (nodeValue) to get the text from the element

nodeValue
This property lets you access or update contents of a text node.
See p214

The text node does not include text inside any child elements.

WORK WITH HTML CONTENT

[image: images]

One property allows access to child elements and text content:
innerHTML
See p220

Another just the text content:
textContent
See p216

Several methods let you create new nodes, add nodes to a tree, and remove nodes from a tree:
createElement()
createTextNode()
appendChild() / removeChild()
This is called DOM manipulation.
See p222

ACCESS OR UPDATE ATTRIBUTE VALUES

[image: images]

Here are some of the properties and methods you can use to work with attributes:
className / id
Lets you get or update the value of the class and id attributes.
See p232

hasAttribute()
getAttribute()
setAttribute()
removeAttribute()
The first checks if an attribute exists. The second gets its value. The third updates the value. The fourth removes an attribute.
See p232

CACHING DOM QUERIES

Methods that find elements in the DOM tree are called DOM queries. When you need to work with an element more than once, you should use a variable to store the result of this query.

When a script selects an element to access or update, the interpreter must find the element(s) in the DOM tree.

Below, the interpreter is told to look through the DOM tree for an element whose id attribute has a value of one.

Once it has found the node that represents the element(s), you can work with that node, its parent, or any children.

[image: images]

When people talk about storing elements in variables, they are really storing the location of the element(s) within the DOM tree in a variable. The properties and methods of that element node work on the variable.

If your script needs to use the the same element(s) more than once, you can store the location of the element(s) in a variable.

This saves the browser looking through the DOM tree to find the same element(s) again. It is known as caching the selection.

Programmers would say that the variable stores a reference to the object in the DOM tree. (It is storing the location of the node.)

[image: images]

 itemOne does not store the element, it stores a reference to where that node is in the DOM tree. To access the text content of this element, you might use the variable name: itemOne.textContent

ACCESSING ELEMENTS

DOM queries may return one element, or they may return a NodeList, which is a collection of nodes.

Sometimes you will just want to access one individual element (or a fragment of the page that is stored within that one element). Other times you may want to select a group of elements, for example, every <h1> element in the page or every element within a particular list.

Here, the DOM tree shows the body of the page of the list example. We focus on accessing elements first so it only shows element nodes. The diagrams in the coming pages highlight which elements a DOM query would return. (Remember, element nodes are the DOM representation of an element.)

[image: images]

GROUPS OF ELEMENT NODES

If a method can return more than one node, it will always return a NodeList, which is a collection of nodes (even if it only finds one matching element). You then need to select the element you want from this list using an index number (which means the numbering starts at 0 like the items in an array).

For example, several elements can have the same tag name, so getElementsByTagName() will always return a NodeList.

FASTEST ROUTE

Finding the quickest way to access an element within your web page will make the page seem faster and/or more responsive. This usually means evaluating the minimum number of nodes on the way to the element you want to work with. For example, getElementById() will quickly return one element (because no two elements on the same page should have the same value for an id attribute), but it can only be used when the element you want to access has an id attribute.

METHODS THAT RETURN A SINGLE ELEMENT NODE:

getElementById(‘id’)

[image: images]

Selects an individual element given the value of its id attribute. The HTML must have an id attribute in order for it to be selectable.

First supported: IE5.5, Opera 7, all versions of Chrome, Firefox, Safari.

querySelector(‘css selector’)

[image: images]

Uses CSS selector syntax that would select one or more elements. This method returns only the first of the matching elements.

First supported: IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10

METHODS THAT RETURN ONE OR MORE ELEMENTS (AS A NODELIST):

getElementsByClassName(‘class’)

[image: images]

Selects one or more elements given the value of their class attribute. The HTML must have a class attribute for it to be selectable. This method is faster than querySelectorAll().

First supported: IE9, Firefox 3, Safari 4, Chrome 4, Opera 10 (Several browsers had partial / buggy support in earlier versions)

getElementsByTagName(‘tagName’)

[image: images]

Selects all elements on the page with the specified tag name. This method is faster than querySelectorAll().

First supported: IE6+, Firefox 3, Safari 4, Chrome, Opera 10 (Several browsers had partial / buggy support in earlier versions)

querySelectorAll(‘css selector’)

[image: images]

Uses CSS selector syntax to select one or more elements and returns all of those that match.

First supported: IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10

METHODS THAT SELECT INDIVIDUAL ELEMENTS

getElementById() and querySelector() can both search an entire document and return individual elements. Both use a similar syntax.

getElementById() is the quickest and most efficient way to access an element because no two elements can share the same value for their id attribute. The syntax for this method is shown below, and an example of its use is on the page to the right.

querySelector() is a more recent addition to the DOM, so it is not supported in older browsers. But it is very flexible because its parameter is a CSS selector, which means it can be used to accurately target many more elements.

[image: images]

This code will return the element node for the element whose id attribute has a value of one. You often see element nodes stored in a variable for use later in the script (as you saw on p190).

Here the method is used on the document object so it looks for that element anywhere within the page. DOM methods can also be used on element nodes within the page to find descendants of that node.

SELECTING ELEMENTS USING ID ATTRIBUTES

[image: images]

[image: images]

[image: images]

getElementById() allows you to select a single element node by specifying the value of its id attribute.

This method has one parameter: the value of the id attribute on the element you want to select. This value is placed inside quote marks because it is a string. The quotes can be single or double quotes, but they must match.

In the example on the left, the first line of JavaScript code finds the element whose id attribute has a value of one, and stores a reference to that node in a variable called el.

The code then uses a property called className (which you meet on p232) to update the value of the class attribute of the element stored in this variable. Its value is cool, and this triggers a new rule in the CSS that sets the background color of the element to aqua.

Note how the className property is used on the variable that stores the reference to the element.

Browser Support: This is one of the oldest and best supported methods for accessing elements.

This result window shows the example after the script has updated the first list item. The original state, before the script ran, is shown on p185.

NODELISTS: DOM QUERIES THAT RETURN MORE THAN ONE ELEMENT

When a DOM method can return more than one element, it returns a NodeList (even if it only finds one matching element).

A NodeList is a collection of element nodes. Each node is given an index number (a number that starts at zero, just like an array).

The order in which the element nodes are stored in a NodeList is the same order that they appeared in the HTML page.

When a DOM query returns a NodeList, you may want to:

	Select one element from the NodeList.

	Loop through each item in the NodeList and perform the same statements on each of the element nodes.

NodeLists look like arrays and are numbered like arrays, but they are not actually arrays; they are a type of object called a collection.

Like any other object, a NodeList has properties and methods, notably:

	The length property tells you how many items are in the NodeList.

	The item() method returns a specific node from the NodeList when you tell it the index number of the item that you want (in the parentheses). However, it is more common to use array syntax (with square brackets) to retrieve an item from a NodeList (as you will see on p199).

LIVE & STATIC NODELISTS

There are times when you will want to work with the same selection of elements several times, so the NodeList can be stored in a variable and re-used (rather than collecting the same elements again).

In a live NodeList, when your script updates the page, the NodeList is updated at the same time. The methods beginning getElementsBy… return live NodeLists. They are also typically faster to generate than static NodeLists.

In a static NodeList when your script updates the page, the NodeList is not updated to reflect the changes made by the script.

The new methods that begin querySelector… (which use CSS selector syntax) return static NodeLists. They reflect the document when the query was made. If the script changes the content of the page, the NodeList is not updated to reflect those changes.

Here you can see four different DOM queries that all return a NodeList. For each query, you can see the elements and their index numbers in the NodeList that is returned.

[image: images]

SELECTING AN ELEMENT FROM A NODELIST

There are two ways to select an element from a NodeList: The item() method and array syntax. Both require the index number of the element you want.

THE item() METHOD

NodeLists have a method called item() which will return an individual node from the NodeList.

You specify the index number of the element you want as a parameter of the method (inside the parentheses).

Executing code when there are no elements to work with wastes resources. So programmers often check that there is at least one item in the NodeList before running any code. To do this, use the length property of the NodeList - it tells you how many items the NodeList contains.

Here you can see that an if statement is used. The condition for the if statement is whether the length property of the NodeList is greater than zero. If it is, then the statements inside the if statement are executed. If not, the code continues to run after the second curly brace.

[image: image]

1

Select elements that have a class attribute whose value is hot and store the NodeList in a variable called elements.

2

Use the length property to check how many elements were found. If 1 or more are found, run the code in the if statement.

3

Store the first element from the NodeList in a variable called firstItem. (It says 0 because index numbers start at zero.)

Array syntax is preferred over the item() method because it is faster. Before selecting a node from a NodeList, check that it contains nodes. If you repeatedly use the NodeList, store it in a variable.

ARRAY SYNTAX

You can access individual nodes using a square bracket syntax similar to that used to access individual items from an array.

You specify the index number of the element you want inside square brackets that follow the NodeList.

As with all DOM queries, if you need to access the same NodeList several times, store the result of the DOM query in a variable.

In the examples on both of these pages, the NodeList is stored in a variable called elements.

If you create a variable to hold a NodeList (as shown below) but there are no matching elements, the variable will be an empty NodeList. When you check the length property of the variable, it will return the number 0 because it does not contain any elements.

[image: image]

1

Create a NodeList containing elements that have a class attribute whose value is hot, and store it in the variable elements.

2

If that number is greater than or equal to one, run the code inside the if statement.

3

Get the first element from the NodeList (it says 0 because index numbers start at zero).

SELECTING ELEMENTS USING CLASS ATTRIBUTES

The getElementsByClassName() method allows you to select elements whose class attribute contains a specific value.

The method has one parameter: the class name which is given in quotes within the parentheses after the method name.

Because several elements can have the same value for their class attribute, this method always returns a NodeList.

[image: images]

[image: images]

This example starts by looking for elements whose class attribute contains hot. (The value of a class attribute can contain several class names, each separated by a space.) The result of this DOM query is stored in a variable called elements because it is used more than once in the example.

An if statement checks if the query found more than two elements. If so, the third one is selected and stored in a variable called el. The class attribute of that element is then updated to say class. (In turn, this triggers a new CSS style, changing the presentation of that element.)

Browser Support: IE9, Firefox 3, Chrome 4, Opera 9.5, Safari 3.1

SELECTING ELEMENTS BY TAG NAME

The getElementsByTagName() method allows you to select elements using their tag name.

The element name is specified as a parameter, so it is placed inside the parentheses and is contained by quote marks.

Note that you do not include the angled brackets that surround the tag name in the HTML (just the letters inside the brackets).

[image: images]

[image: images]

This example looks for any elements in the document. It stores the result in a variable called elements because the result is used more than once in this example.

An if statement checks if any elements were found. As with any element that can return a NodeList, you check that there will be a suitable element before you try to work with it.

If matching elements were found, the first one is selected and its class attribute is updated. This changes the color of the list item to make it aqua.

Browser Support: Very good - it is safe to use in any scripts.

SELECTING ELEMENTS USING CSS SELECTORS

querySelector() returns the first element node that matches the CSS-style selector. querySelectorAll() returns a NodeList of all of the matches.

Both methods take a CSS selector as their only parameter. The CSS selector syntax offers more flexibility and accuracy when selecting an element than just specifying a class name or a tag name, and should also be familiar to front-end web developers who are used to targeting elements using CSS.

[image: images]

[image: images]

These two methods were introduced by browser manufacturers because a lot of developers were including scripts like jQuery in their pages so that they could select elements using CSS selectors. (You meet jQuery in Chapter 7.)

If you look at the final line of code, array syntax is used to select the second item from the NodeList, even though that NodeList is stored in a variable.

Browser Support: The drawback with these two methods is that they are only supported in more recent browsers.

IE8+ (released Mar 2009)
Firefox 3.5+ (released Jun 2009)
Chrome 1+ (released Sep 2008)
Opera 10+ (released Sep 2009)
Safari 3.2+ (released Nov 2008)

JavaScript code runs one line at a time, and statements affect the content of a page as the interpreter processes them.

If a DOM query runs when a page loads, the same query could return different elements if it is used again later in the page.

Below you can see how the example on the left-hand page (query-selector.js) changes the DOM tree as it runs.

[image: images]

[image: images]

[image: images]

1. This is how the page starts. There are three elements that have a class attribute whose value is hot. The querySelector() method finds the first one, and updates the value of its class attribute from hot to cool. This also updates the DOM tree stored in memory so - after this line has run - only the second and third elements have a class attribute with a value of hot.

2. When the second selector runs, there are now only two elements whose class attributes have a value of hot (see left), so it just selects these two. This time, array syntax is used to work with the second of the matching elements (which is the third list item). Again the value of its class attribute is changed from hot to cool.

3. When the second selector has done its job, the DOM tree now only holds one element whose class attribute has a value of hot. Any further code looking for elements whose class attribute has a value of hot would find only this one. However, if they were looking for elements whose class attribute has a value of cool, they would find two matching element nodes.

REPEATING ACTIONS FOR AN ENTIRE NODELIST

When you have a NodeList, you can loop through each node in the collection and apply the same statements to each.

In this example, once a NodeList has been created, a for loop is used to go through each element in the NodeList.

All of the statements inside the for loop's curly braces are applied to each element in the NodeList one-by-one.

To indicate which item of the NodeList is currently being worked with, the counter i is used in the array-style syntax.

[image: image]

1

The variable hotItems contains a NodeList. It contains all list items whose class attribute has a value of hot. They are collected using the querySelectorAll() method.

2

The length property of the NodeList indicates how many elements are in the NodeList. The number of elements dictates how many times the loop should run.

3

Array syntax is used to indicate which item in the NodeList is currently being worked with: hotItems[i] It uses the counter variable inside the square brackets.

LOOPING THROUGH A NODELIST

If you want to apply the same code to numerous elements, looping through a NodeList is a powerful technique.

It involves finding out how many items are in the NodeList, and then setting a counter to loop through them, one-by-one.

Each time the loop runs, the script checks that the counter is less than the total number of items in the NodeList.

[image: images]

[image: images]

In this example, the NodeList is generated using querySelectorAll(), and it is looking for any elements that have a class attribute whose value is hot.

The NodeList is stored in a variable called hotItems, and the number of elements in the list is found using the length property.

For each of the elements in the NodeList, the value of the class attribute is changed to cool.

LOOPING THROUGH A NODELIST: PLAY-BY-PLAY

[image: images]

At the start of this example, there are three list items with a class attribute whose value is hot so the value of hotItems.length is 3.

At first, the value of the counter is set to 0, so the first item from the NodeList (which has an index of 0) is targeted and the value of its class attribute is set to cool.

When the value of the counter is 1, the second item from the NodeList (which has an index of 1) is targeted and the value of its class attribute is set to cool.

When the value of the counter is 2, the third item from the NodeList (which has an index of 2) is targeted and the value of its class attribute is set to cool.

When the value of the counter is 3, the condition no longer returns true, so the loops ends. The script then continues to the first line of code after the loop.

TRAVERSING THE DOM

When you have an element node, you can select another element in relation to it using these five properties. This is known as traversing the DOM.

parentNode

This property finds the element node for the containing (or parent) element in the HTML.

(1) If you started with the first element, then its parent node would be the one representing the element.

previousSibling nextSibling

These properties find the previous or next sibling of a node if there are siblings.

If you started with the first element, it would not have a previous sibling. However, its next sibling (2) would be the node representing the second .

firstChild lastChild

These properties find the first or last child of the current element.

If you started with the element, the first child would be the node representing the first element, and (3) the last child would be the last .

[image: images]

These are properties of the current node (not methods to select an element); therefore, they do not end in parentheses.

If you use these properties and they do not have a previous/next sibling, or a first/last child, the result will be null.

These properties are read-only; they can only be used to select a new node, not to update a parent, sibling, or child.

WHITESPACE NODES

Traversing the DOM can be difficult because some browsers add a text node whenever they come across whitespace between elements.

Most browsers, except IE, treat whitespace between elements (such as spaces or carriage returns) as a text node, so the properties below return different elements in different browsers:

previousSibling
nextSibling
firstChild
lastChild

Below, you can see all of the whitespace nodes added to the DOM tree for the list example. Each one is represented by a green square. You could strip all the whitespace out of a page before serving it to the browser. This would also make the page smaller and faster to serve/load. However, it would also make the code much harder to read.

Another way around this problem is to avoid using these DOM properties altogether.

One of the most popular ways to address this kind of problem is to use a JavaScript library such as jQuery, which helps deal with such problems. These types of browser inconsistencies were a big factor in jQuery's popularity.

[image: images]

Internet Explorer (shown above) ignores whitespace and does not create extra text nodes.

[image: images]

Chrome, Firefox, Safari, and Opera create text nodes from whitespace (spaces and carriage returns).

PREVIOUS & NEXT SIBLING

You have just seen that these properties can return inconsistent results in different browsers. However, it is safe to use them when there is no whitespace between elements.

For this example, all spaces between the HTML elements have been removed. In order to demonstrate these properties, the second list item is selected using getElementById().

From this element node, the previousSibling property will return the first element, and the nextSibling property will return the third element.

[image: images]

[image: images]

[image: images]

Note how references to sibling nodes are stored in new variables. This means properties such as className can be used on that node by adding the dot notation between the variable name and the property.

FIRST & LAST CHILD

These properties also return inconsistent results if there is whitespace between elements. In this example, a slightly different solution is used in the HTML - the closing tags are put next to the opening tags of the next element, making it a little more readable. The example starts by using the getElementsByTagName() method to select the element from the page. From this element node, the firstChild property will return the first element, and the lastChild property will return the last element.

[image: images]

[image: images]

[image: images]

HOW TO GET/UPDATE ELEMENT CONTENT

So far this chapter has focused on finding elements in the DOM tree. The rest of this chapter shows how to access/update element content. Your choice of techniques depends upon what the element contains.

Take a look at the three examples of elements on the right. Each one adds some more markup and, as a result, the fragment of the DOM tree for each list item is very different.

	The first (on this page) just contains text.

	The second and third (on the right-hand page) contain a mix of text and an element.

You can see that by adding something as simple as an element, the DOM tree's structure changes significantly. In turn, this affects how you might work with that list item. When an element contains a mix of text and other elements, you are more likely to work with the containing element rather than the individual nodes for each descendant.

[image: images]

Above, the element has:

	One child node holding the word that you can see in the list item: figs

	An attribute node holding the id attribute.

To work with the content of elements you can:

	Navigate to the text nodes. This works best when the element contains only text, no other elements.

	Work with the containing element. This allows you to access its text nodes and child elements. It works better when an element has text nodes and child elements that are siblings.

TEXT NODES

Once you have navigated from an element to its text node, there is one property that you will commonly find yourself using:

	PROPERTY
	DESCRIPTION

	nodeValue
	Accesses text from node (p214)

[image: images]

An element is added. It becomes the first child.

	The element node has its own child text node which contains the word fresh.

	The original text node is now a sibling of the node that represents the element.

[image: images]

When text is added before the element:

	The first child of the element is a text node, which contains the word six.

	It has a sibling which is an element node for the element. In turn, that element node has a child text node containing the word fresh.

	Finally, there is a text node holding the word figs, which is a sibling of both the text node for the word “six” and the element node, .

CONTAINING ELEMENT

When you are working with an element node (rather than its text node), that element can contain markup. You have to choose whether you want to retrieve (get) or update (set) the markup as well as the text.

	PROPERTY
	DESCRIPTION

	innerHTML
	Gets/sets text & markup (p220)

	textContent
	Gets/sets text only (p216)

	innerText
	Gets/sets text only (p216)

When you use these properties to update the content of an element, the new content will overwrite the entire contents of the element (both text and markup).

For example, if you used any of these properties to update the content of the <body> element, it would update the entire web page.

ACCESS & UPDATE A TEXT NODE WITH NODEVALUE

When you select a text node, you can retrieve or amend the content of it using the nodeValue property.

[image: images]

In order to use nodeValue, you must be on a text node, not the element that contains the text.

This example shows that navigating from the element node to a text node can be complicated.

If you do not know whether there will be element nodes alongside text nodes, it is easier to work with the containing element.

1. The element node is selected using the getElementById() method.

2. The first child of is the element.

3. The text node is the next sibling of that element.

4. You have the text node and can access its contents using nodeValue.

ACCESSING & CHANGING A TEXT NODE

To work with text in an element, first the element node is accessed and then its text node.

The text node has a property called nodeValue which returns the text in that text node.

You can also use the nodeValue property to update the content of a text node.

[image: images]

[image: images]

This example takes the text content of the second list item and changes it from pine nuts to kale.

The first line collects the second list item. It is stored in a variable called itemTwo.

Next the text content of that element is stored in a variable called elText.

The third line of text replaces the words ‘pine nuts’ with ‘kale’ using the String object's replace() method.

The last line uses the nodeValue property to update the content of the text node with the updated value.

ACCESS & UPDATE TEXT WITH TEXTCONTENT (& INNERTEXT)

The textContent property allows you to collect or update just the text that is in the containing element (and its children).

textContent

To collect the text from the elements in our example (and ignore any markup inside the element) you can use the textContent property on the containing element. In this case it would return the value: fresh figs.

You can also use this property to update the content of the element; it replaces the entire content of it (including any markup).

[image: images]

One issue with the textContent property is that Internet Explorer did not support it until IE9. (All other major browsers support it.)

innerText

You may also come across a property called innerText, but you should generally avoid it for three key reasons:

SUPPORT

Although most browser manufacturers adopted the property, Firefox does not because innerText is not part of any standard.

OBEYS CSS

It will not show any content that has been hidden by CSS. For example, if there were a CSS rule that hid the elements, the innerText property would return only the word figs.

PERFORMANCE

Because the innerText property takes into account layout rules that specify whether the element is visible or not, it can be slower to retrieve the content than the textContent property.

ACCESSING TEXT ONLY

In order to demonstrate the difference between textContent and innerText, this example features a CSS rule to hide the contents of the element.

The script starts off by getting the content of the first list item using both the textContent property and innerText. It then writes the values after the list.

Finally, the value of the first list item is then updated to say sourdough bread. This is done using the textContent property.

[image: images]

[image: images]

In most browsers:

	textContent collects the words fresh figs.

	innerHTML just shows figs (because fresh was hidden by the CSS).

But:

	In IE8 or earlier, the textContent property does not work.

	In Firefox, the innerText property will return undefined because the it was never implemented in Firefox.

ADDING OR REMOVING HTML CONTENT

There are two very different approaches to adding and removing content from a DOM tree: the innerHTML property and DOM manipulation.

THE innerHTML PROPERTY

Note: there are security risks associated with using innerHTML - these issues are described on p228.

APPROACH

innerHTML can be used on any element node. It is used both to retrieve and replace content. To update an element, new content is provided as a string. It can contain markup for descendant elements.

ADDING CONTENT

To add new content:

1. Store new content (including markup) as a string in a variable.

2. Select the element whose content you want to replace.

3. Set the element's innerHTML property to be the new string.

REMOVING CONTENT

To remove all content from an element, you set innerHTML to an empty string. To remove one element from a DOM fragment, e.g., one from a , you need to provide the entire fragment minus that element.

EXAMPLE: CHANGING A LIST ITEM

1: Create variable holding markup

var item;
item = ‘Fresh figs’;

You can have as much or as little markup in the variable as you want. It is a quick way to add a lot of markup to the DOM tree.

2: Select element whose content you want to update

[image: images]

3: Update content of selected element with new markup

[image: images]

DOM manipulation easily targets individual nodes in the DOM tree, whereas innerHTML is better suited to updating entire fragments.

DOM MANIPULATION METHODS

DOM manipulation can be safer than using innerHTML, but it requires more code and can be slower.

APPROACH

DOM manipulation refers to a set of DOM methods that allow you to create element and text nodes, and then attach them to the DOM tree or remove them from the DOM tree.

ADDING CONTENT

To add content, you use a DOM method to create new content one node at a time and store it in a variable. Then another DOM method is used to attach it to the right place in the DOM tree.

REMOVING CONTENT

You can remove an element (along with any contents and child elements it may contain) from the DOM tree using a single method.

EXAMPLE: ADDING A LIST ITEM

1: Create new text node

[image: images]

2: Create new element node

[image: images]

3: Add text node to element node

[image: images]

4: Select element you want to add the new fragment to

[image: images]

5: Append the new fragment to the selected element

[image: images]

ACCESS & UPDATE TEXT & MARKUP WITH INNERHTML

Using the innerHTML property, you can access and amend the contents of an element, including any child elements.

innerHTML

When getting HTML from an element, the innerHTML property will get the content of an element and return it as one long string, including any markup that the element contains.

When used to set new content for an element, it will take a string that can contain markup and process that string, adding any elements within it to the DOM tree.

When adding new content using innerHTML, be aware that one missing closing tag could throw out the design of the entire page.

Even worse, if innerHTML is used to add content that your users created to a page, they could add malicious content. See p228.

[image: images]

GET CONTENT

The following line of code collects the content of the list item and adds it to a variable called elContent:
var elContent = document.getElementById(‘one’).innerHTML;

The elContent variable would now hold the string:
‘fresh figs’

SET CONTENT

The following line of code adds the content of the elContent variable (including any markup) to the first list item:
document.getElementById(‘one’).innerHTML = elContent;

UPDATE TEXT & MARKUP

This example starts by storing the first list item in a variable called firstItem.

It then retrieves the content of this list item and stores it in a variable called itemContent.

Finally, the content of the list item is placed inside a link. Note how the quotes are escaped.

[image: images]

[image: images]

As the content of the string is added to the element using the innerHTML property, the browser will add any elements in the string to the DOM. In this example, an <a> element has been added to the page. (Any new elements will also be available to other scripts in the page.)

If you use attributes in your HTML code, escaping the quotation using the backslash character \ can make it clearer that those characters are not part of the script.

ADDING ELEMENTS USING DOM MANIPULATION

DOM manipulation offers another technique to add new content to a page (rather than innerHTML). It involves three steps:

1

CREATE THE ELEMENT

createElement()

You start by creating a new element node using the createElement() method. This element node is stored in a variable.

When the element node is created, it is not yet part of the DOM tree. It is not added to the DOM tree until step 3.

2

GIVE IT CONTENT

createTextNode()

createTextNode() creates a new text node. Again, the node is stored in a variable. It can be added to the element node using the appendChild() method.

This provides the content for the element, although you can skip this step if you want to attach an empty element to the DOM tree.

3

ADD IT TO THE DOM

appendChild()

Now that you have your element (optionally with some content in a text node), you can add it to the DOM tree using the appendChild() method.

The appendChild() method allows you to specify which element you want this node added to, as a child of it.

In the example at the end of the chapter, you will see another method that can be used to insert an element into the DOM tree. The insertBefore() method is used to add a new element before the selected DOM node.

DOM manipulation and innerHTML both have uses. You will see a discussion of when to choose each method on p226.

Note: You may see developers leave an empty element in their HTML pages in order to attach new content to that element, but this practice is best avoided unless absolutely necessary.

ADDING AN ELEMENT TO THE DOM TREE

createElement() creates an element that can be added to the DOM tree, in this case an empty element for the list.

This new element is stored inside a variable called newEl until it is attached to the DOM tree later on.

createTextNode() allows you to create a new text node to attach to an element. It is stored in a variable called newText.

[image: images]

[image: images]

The text node is added to the new element node using appendChild().

The getElementsByTagName() method selects the position in the DOM tree to insert the new element (the first element in the page).

Finally, appendChild() is used again - this time to insert the new element and its content into the DOM tree.

REMOVING ELEMENTS VIA DOM MANIPULATION

DOM manipulation can be used to remove elements from the DOM tree.

1

STORE THE ELEMENT TO BE REMOVED IN A VARIABLE

You start by selecting the element that is going to be removed and store that element node in a variable.

You can use any of the methods you saw in the section on DOM queries to select the element.

When you remove an element from the DOM, it will also remove any child elements.

2

STORE THE PARENT OF THAT ELEMENT IN A VARIABLE

Next, you find the parent element that contains the element you want to remove and store that element node in a variable.

The simplest way to get this element is to use the parentNode property of this element.

The example on the right is quite simple, but this technique can significantly alter the DOM tree.

3

REMOVE THE ELEMENT FROM ITS CONTAINING ELEMENT

The removeChild() method is used on the containing element that you selected in step 2.

The removeChild() method takes one parameter: the reference to the element that you no longer want.

Removing elements from the DOM will affect the index number of siblings in a NodeList.

REMOVING AN ELEMENT FROM THE DOM TREE

This example uses the removeChild() method to remove the fourth item from the list (along with its contents).

The first variable, removeEl, stores the actual element you want to remove from the page (the fourth list item).

The second variable, containerEl, stores the element that contains the element you want to remove.

[image: images]

[image: images]

The removeChild() method is used on the variable that holds the container node.

It requires one parameter: the element you want to remove (which is stored in the second variable).

[image: images]

COMPARING TECHNIQUES: UPDATING HTML CONTENT

So far, you have seen three techniques for adding HTML to a web page. It's time to compare when you should use each one.

In any programming language, there are often several ways to achieve the same task. In fact, if you asked ten programmers to write the same script, you may well find ten different approaches.

Some programmers can be rather opinionated and believe that their way is always the “right” way to do things - when there are often several right ways. If you understand why people prefer some approaches over others, then you are in a strong position to decide whether it meets the needs of your project.

document.write()

The document object's write() method is a simple way to add content that was not in the original source code to the page, but its use is rarely advised.

ADVANTAGES

	It is a quick and easy way to show beginners how content can be added to a page.

DISADVANTAGES

	It only works when the page initially loads.

	If you use it after the page has loaded it can:
1. Overwrite the whole page

2. Not add the content to the page

3. Create a new page

	It can cause problems with XHTML pages that are strictly validated.

	This method is very rarely used by programmers these days and is generally frowned upon.

You can choose different techniques depending on the task (and keep in mind how the site might be developed in the future).

element.innerHTML

The innerHTML property lets you get/update the entire content of any element (including markup) as a string.

ADVANTAGES

	You can use it to add a lot of new markup using less code than DOM manipulation methods.

	It can be faster than DOM manipulation when adding a lot of new elements to a web page.

	It is a simple way to remove all of the content from one element (by assigning it a blank string).

DISADVANTAGES

	It should not be used to add content that has come from a user (such as a username or blog comment), as it can pose a significant security risk which is discussed over the next four pages.

	It can be difficult to isolate single elements that you want to update within a larger DOM fragment.

	Event handlers may no longer work as intended.

DOM MANIPULATION

DOM manipulation refers to using a set of methods and properties to access, create, and update elements and text nodes.

ADVANTAGES

	It is suited to changing one element from a DOM fragment where there are many siblings.

	It does not affect event handlers.

	It easily allows a script to add elements incrementally (when you do not want to alter a lot of code at once).

DISADVANTAGES

	If you have to make a lot of changes to the content of a page, it is slower than innerHTML.

	You need to write more code to achieve the same thing compared with innerHTML.

CROSS-SITE SCRIPTING (XSS) ATTACKS

If you add HTML to a page using innerHTML (or several jQuery methods), you need to be aware of Cross-Site Scripting Attacks or XSS; otherwise, an attacker could gain access to your users’ accounts.

This book has several warnings about security issues when you add HTML to a page using innerHTML. (There are also notes about it when using jQuery.)

HOW XSS HAPPENS

XSS involves an attacker placing malicious code into a site. Websites often feature content created by many different people. For example:

	Users can create profiles or add comments

	Multiple authors may contribute articles

	Data can come from third-party sites such as Facebook, Twitter, news tickers, and other feeds

	Files such as images and video may be uploaded

Data you do not have complete control over is known as untrusted data; it must be handled with care.

The next four pages describe the issues you need to be aware of, and how to make your site secure against these kinds of attacks.

WHAT CAN THESE ATTACKS DO?

XSS can give the attacker access to information in:

	The DOM (including form data)

	That website's cookies

	Session tokens: information that identifies you from other users when you log into a site

This could let the attacker access a user account and:

	Make purchases with that account

	Post defamatory content

	Spread their malicious code further / faster

EVEN SIMPLE CODE CAN CAUSE PROBLEMS:

Malicious code often mixes HTML and JavaScript (although URLs and CSS can be used to trigger XSS attacks). The two examples below demonstrate how fairly simple code could help an attacker access a user's account.

This first example stores cookie data in a variable, which could then be sent to a third-party server:
<script>var adr=‘http://example.com/xss.php?cookie=’ + escape(document.cookie);</script>

This code shows how a missing image can be used with an HTML attribute to trigger malicious code:

Any HTML from untrusted sources opens your site to XSS attacks. But the threat is only from certain characters.

DEFENDING AGAINST CROSS-SITE SCRIPTING

VALIDATE INPUT GOING TO THE SERVER

1. Only let visitors input the kind of characters they need to when supplying information. This is known as validation. Do not allow untrusted users to submit HTML markup or JavaScript.

2. Double-check validation on the server before displaying user content/storing it in a database. This is important because users could bypass validation in the browser by turning JavaScript off.

3. The database may safely contain markup and script from trusted sources (e.g., your content management system). This is because it does not try to process the code; it just stores it.

[image: images]

ESCAPE DATA COMING FROM THE SERVER & DATABASE

6. Do not create DOM fragments containing HTML from untrusted sources. It should only be added as text once it has been escaped.

5. Make sure that you are only inserting content generated by users into certain parts of the template files (see p230).

4. As your data leaves the database, all potentially dangerous characters should be escaped (see p231).

So, you can safely use innerHTML to add markup to a page if you have written the code - but content from any untrusted sources should be escaped and added as text (not markup), using properties like textContent.

XSS: VALIDATION & TEMPLATES

Make sure that your users can only input characters they need to use and limit where this content will be shown on the page.

FILTER OR VALIDATE INPUT

The most basic defense is to prevent users from entering characters into form fields that they do not need to use when providing that kind of information.

For example, users’ names and email addresses will not contain angled brackets, ampersands, or parentheses, so you can validate data to prevent characters like this being used.

This can be done in the browser, but must also be done on the server (in case the user has JavaScript turned off). You learn about validation in Chapter 13.

You may have seen that the comment sections on websites rarely allow you to enter a lot of markup (they sometimes allow a limited subset of HTML). This is to prevent people from entering malicious code such as <script> tags, or any other character with an event handling attribute.

Even the HTML editors used in many content management systems will limit the code that you are allowed to use within them, and will automatically try to correct any markup that looks malicious.

LIMIT WHERE USER CONTENT GOES

Malicious users will not just use <script> tags to try and create an XSS attack. As you saw on p228, malicious code can live in an event handler attribute without being wrapped in <script> tags. XSS can also be triggered by malicious code in CSS or URLs.

Browsers process HTML, CSS, and JavaScript in different ways (or execution contexts), and in each language different characters can cause problems. Therefore, you should only add content from untrusted sources as text (not markup), and place that text in elements that are visible in the viewport.

Never place any user's content in the following places without detailed experience of the issues involved (which are beyond the scope of this book):

	Script tags:
	<script>not here</script>

	HTML comments:
	<!-- not here -->

	Tag names:
	<notHere href=“/test” />

	Attributes:
	<div notHere=“norHere” />

	CSS values:
	{color: not here}

XSS: ESCAPING & CONTROLLING MARKUP

Any content generated by users that contain characters that are used in code should be escaped on the server. You must control any markup added to the page.

ESCAPING USER CONTENT

All data from untrusted sources should be escaped on the server before it is shown on the page. Most server-side languages offer helper functions that will strip-out or escape malicious code.

HTML

Escape these characters so that they are displayed as characters (not processed as code).

	&
	&

	<
	<

	>
	>

	`
	`

	'
	' (not ')

	“
	"

	/
	/

JAVASCRIPT

Never include data from untrusted sources in JavaScript. It involves escaping all ASCII characters with a value less than 256 that are not alphanumeric characters (and can be a security risk).

URLS

If you have links containing user input (e.g., links to a user profile or search queries), use the JavaScript encodeURIComponent() method to encode the user input. It encodes the following characters:
, / ? : @ & = + $ #

ADDING USER CONTENT

When you add untrusted content to an HTML page, once it has been escaped on the server, it should still be added to the page as text. JavaScript and jQuery both offer tools for doing this:

JAVASCRIPT

DO use: textContent or innerText (see p216)
DO NOT use: innerHTML (see p220)

JQUERY

DO use: .text() (see p316)
DO NOT use: .html() (see p316)

You can still use the innerHTML property and jQuery .html() method to add HTML to the DOM, but you must make sure that:

	You control all of the markup being generated (do not allow user content that could contain markup).

	The user's content is escaped and added as text using the approaches noted above, rather than adding the user's content as HTML.

ATTRIBUTE NODES

Once you have an element node, you can use other properties and methods on that element node to access and change its attributes.

There are two steps to accessing and updating attributes.

First, select the element node that carries the attribute and follow it with a period symbol.

Then, use one of the methods or properties below to work with that element's attributes.

[image: images]

	METHOD
	DESCRIPTION

	getAttribute()
	gets the value of an attribute

	hasAttribute()
	checks if element node has a specified attribute

	setAttribute()
	sets the value of an attribute

	removeAttribute()
	removes an attribute from an element node

	PROPERTY
	DESCRIPTION

	className
	gets or sets the value of the class attribute

	id
	gets or sets the value of the id attribute

You have seen that the DOM treats each HTML element as its own object in the DOM tree. The properties of the object correspond to the attributes that type of element can carry. On the left, you can see the className and id properties. (Others include accessKey, checked, href, lang, and title.)

CHECK FOR AN ATTRIBUTE AND GET ITS VALUES

Before you work with an attribute, it is good practice to check whether it exists. This will save resources if the attribute cannot be found.

The hasAttribute() method of any element node lets you check if an attribute exists. The attribute name is given as an argument in the parentheses.

Using hasAttribute() in an if statement like this means that the code inside the curly braces will run only if the attribute exists on the given element.

[image: images]

[image: images]

In this example, the DOM query getElementById() returns the element whose id attribute has a value of one.

The hasAttribute() method is used to check whether this element has a class attribute, and returns a Boolean. This is used with an if statement so that the code in the curly braces will run only if the class attribute does exist.

The getAttribute() method returns the value of the class attribute, which is then written to the page.

Browser Support: Both of these methods have good support in all major web browsers.

CREATING ATTRIBUTES & CHANGING THEIR VALUES

The className property allows you to change the value of the class attribute. If the attribute does not exist, it will be created and given the specified value.

You have seen this property used throughout the chapter to update the status of the list items. Below, you can see another way to achieve the task.

The setAttribute() method allows you to update the value of any attribute. It takes two parameters: the attribute name, and the value for the attribute.

[image: images]

[image: images]

When there is a property (like the className or id properties), it is generally considered better to update the properties rather than use a method (because, behind the scenes, the method would just be setting the properties anyway).

When you update the value of an attribute (especially the class attribute) it can be used to trigger new CSS rules, and therefore change the appearance of the elements.

Note: These techniques override the entire value of the class attribute. They do not add a new value to the existing value of the class attribute.

If you wanted to add a new value onto the existing value of the class attribute, you would need to read the content of the attribute first, then add the new text to that existing value of the attribute (or use the jQuery .addClass() method covered on p320).

REMOVING ATTRIBUTES

To remove an attribute from an element, first select the element, then call removeAttribute(). It has one parameter: the name of the attribute to remove.

Trying to remove an attribute that does not exist will not cause an error, but it is good practice to check for its existence before attempting to remove it.

In this example, the getElementById() method is used to retrieve the first item from this list, which has an id attribute with a value of one.

[image: images]

[image: images]

The script checks to see if the selected element has a class attribute and, if so, it is removed.

EXAMINING THE DOM IN CHROME

Modern browsers come with tools that help you inspect the page loaded in the browser and understand the structure of the DOM tree.

In the screenshot to the right, the element is highlighted and the Properties panel (1) indicates that this is an:

	li element with an id attribute whose value is one and class whose value is hot

	an HTMLLIElement

	an HTMLElement

	an element

	a node

	an object

Each of these object names has an arrow next to it which you can use to expand that section. It will tell you what properties are available to that kind of node.

They are separated because some properties are specific to list item elements, others to element nodes, others to all nodes, and others to all objects, and the different properties are listed under the corresponding type of node. But they do remind you of which properties you can access through the DOM node for that element.

[image: images]

To get the developer tools in Chrome on a Mac, go to the View menu, select Developer and then Developer Tools. On a PC, go to Tools (or More Tools) and select Developer Tools.

Or right-click on any element and select Inspect Element.

Select Elements from the menu that runs across the top of this tool. The source of the page will be shown on the left and several other options to the right.

Any element that has child elements has an arrow next to it that lets you expand and collapse the item to show and hide its content.

The Properties panel (on the right) tells you the type of object the selected element is. (In some versions of Chrome this is shown as a tab.) When you highlight different elements in the main left-hand window, you can see the values in the Properties panel on the right reflect that element.

EXAMINING THE DOM IN FIREFOX

Firefox has similar built-in tools, but you can also download a DOM inspector tool that shows the text nodes.

[image: images]

If you search online for “DOM Inspector”, you will find the tool designed for Firefox shown on the left. In the screen shot, you can see a similar tree view to the one shown in Chrome, but it also shows you where there are whitespace nodes (they are shown as #text). In the panel to the right, you can see the value in the nodes; whitespace nodes have no value in this panel.

Another FIrefox extension worth trying is called Firebug.

[image: images]

Firefox also has a 3D view of the DOM, where a box is drawn around each element, and you can change the angle of the page to show which parts of it stick out more than others. The further they protrude the further into child elements they appear.

This can give you an interesting (and quick) glimpse into the complexity of the markup used on a page and the depth to which elements are nested.

[image: images]

EXAMPLE

DOCUMENT OBJECT MODEL

This example brings together a selection of the techniques you have seen throughout the chapter to update the contents of the list. It has three main aims:

1: Add a new item to the start and end of the list

Adding an item to the start of a list requires the use of a different method than adding an element to the end of the list.

2: Set a class attribute on all items

This involves looping through each of the elements and updating the value of the class attribute to cool.

3: Add the number of list items to the heading

This involves four steps:

1. Reading the content of the heading

2. Counting the number of elements in the page

3. Adding the number of items to the content of the heading

4. Updating the heading with this new content

[image: images]

This part of the example adds two new list items to the element: one to the end of the list and one to the start of it. The technique used here is DOM manipulation and there are four steps to creating a new element node and adding it to the DOM tree:

1. Create the element node

2. Create the text node

3. Add the text node to the element node

4. Add the element to the DOM tree

To achieve step four, you must first specify the parent that will contain the new node. In both cases, this is the element. The node for this element is stored in a variable called list because it is used many times.

The appendChild() method adds new nodes as a child of the parent element. It has one parameter: the new content to be added to the DOM tree. If the parent element already has child elements, it will be added after the last of these (and will therefore be the last child of the parent element).

parent.appendChild(newItem);

(You have seen this method used several times both to add new elements to the tree and to add text nodes to element nodes.)

To add the item to the start of the list, the insertBefore() method is used. This requires one extra piece of information: the element you want to add the new content before (the target element).

parent.insertBefore(newItem, target);

[image: images]

The next step of this example is to loop through all of the elements in the list and update the value of their class attributes, setting them to cool.

This is achieved by first collecting all of the list item elements and storing them in a variable called listItems. A for loop is then used to go through each of them in turn. In order to tell how many times the loop should run, you use the length property.

Finally, the code updates the heading to include the number of list items. It updates it using the innerHTML property as opposed to the DOM manipulation techniques used earlier in the script.

This demonstrates how you can add to the content of an existing element by reading its current value and adding to it. You could use a similar technique if you needed to add a value to an attribute - without overwriting its existing value.

To update the heading with the number of items in the list, you need two pieces of information:

1. The original content of the heading so that you can add the number of list items to it. It is collected using the nodeValue property (although innerHTML or textContent would do the same).

2. The number of list items, which can be found using the length property on the listItems variable.

With this information ready, there are two steps to updating the content of the <h2> element:

1. Creating the new heading and storing it in a variable - the new heading will be made up of the original heading content, followed by the number of items in the list.

2. Updating the heading, which is done by updating the content of the heading element using the innerText property of that node.

SUMMARY

DOCUMENT OBJECT MODEL

	The browser represents the page using a DOM tree.

	DOM trees have four types of nodes: document nodes, element nodes, attribute nodes, and text nodes.

	You can select element nodes by their id or class attributes, by tag name, or using CSS selector syntax.

	Whenever a DOM query can return more than one node, it will always return a NodeList.

	From an element node, you can access and update its content using properties such as textContent and innerHTML or using DOM manipulation techniques.

	An element node can contain multiple text nodes and child elements that are siblings of each other.

	In older browsers, implementation of the DOM is inconsistent (and is a popular reason for using jQuery).

	Browsers offer tools for viewing the DOM tree.

 6

EVENTS

When you browse the web, your browser registers different types of events. It's the browser's way of saying, “Hey, this just happened.” Your script can then respond to these events.

Scripts often respond to these events by updating the content of the web page (via the Document Object Model) which makes the page feel more interactive. In this chapter, you will learn how:

INTERACTIONS CREATE EVENTS

Events occur when users click or tap on a link, hover or swipe over an element, type on the keyboard, resize the window, or when the page they requested has loaded.

EVENTS TRIGGER CODE

When an event occurs, or fires, it can be used to trigger a particular function. Different code can be triggered when users interact with different parts of the page.

CODE RESPONDS TO USERS

In the last chapter, you saw how the DOM can be used to update a page. The events can trigger the kinds of changes the DOM is capable of. This is how a web page reacts to users.

[image: image]

DIFFERENT EVENT TYPES

Here is a selection of the events that occur in the browser while you are browsing the web. Any of these events can be used to trigger a function in your JavaScript code.

UI EVENTS Occur when a user interacts with the browser's user interface (UI) rather than the web page

	EVENT
	DESCRIPTION

	load
	Web page has finished loading

	unload
	Web page is unloading (usually because a new page was requested)

	error
	Browser encounters a JavaScript error or an asset doesn't exist

	resize
	Browser window has been resized

	scroll
	User has scrolled up or down the page

	KEYBOARD EVENTS
	Occur when a user interacts with the keyboard (see also input event)

	EVENT
	DESCRIPTION

	keydown
	User first presses a key (repeats while key is depressed)

	keyup
	User releases a key

	keypress
	Character is being inserted (repeats while key is depressed)

	MOUSE EVENTS
	Occur when a user interacts with a mouse, trackpad, or touchscreen

	EVENT
	DESCRIPTION

	click
	User presses and releases a button over the same element

	dblclick
	User presses and releases a button twice over the same element

	mousedown
	User presses a mouse button while over an element

	mouseup
	User releases a mouse button while over an element

	mousemove
	User moves the mouse (not on a touchscreen)

	mouseover
	User moves the mouse over an element (not on a touchscreen)

	mouseout
	User moves the mouse off an element (not on a touchscreen)

TERMINOLOGY

EVENTS FIRE OR ARE RAISED

When an event has occurred, it is often described as having fired or been raised. In the diagram on the right, if the user is tapping on a link, a click event would fire in the browser.

[image: image]

EVENTS TRIGGER SCRIPTS

Events are said to trigger a function or script. When the click event fires on the element in this diagram, it could trigger a script that enlarges the selected item.

	FOCUS EVENTS
	Occur when an element (e.g., a link or form field) gains or loses focus

	EVENT
	DESCRIPTION

	focus / focusin
	Element gains focus

	blur / focusout
	Element loses focus

	FORM EVENTS
	Occur when a user interacts with a form element

	EVENT
	DESCRIPTION

	input
	Value in any <input> or <textarea> element has changed (IE9+) or any element with the contenteditable attribute

	change
	Value in select box, checkbox, or radio button changes (IE9+)

	submit
	User submits a form (using a button or a key)

	reset
	User clicks on a form's reset button (rarely used these days)

	cut
	User cuts content from a form field

	copy
	User copies content from a form field

	paste
	User pastes content into a form field

	select
	User selects some text in a form field

	MUTATION EVENTS*
	Occur when the DOM structure has been changed by a script
* To be replaced by mutation observers (see p284)

	EVENT
	DESCRIPTION

	DOMSubtreeModified
	Change has been made to document

	DOMNodeInserted
	Node has been inserted as a direct child of another node

	DOMNodeRemoved
	Node has been removed from another node

	DOMNodeInsertedIntoDocument
	Node has been inserted as a descendant of another node

	DOMNodeRemovedFromDocument
	Node has been removed as a descendant of another node

HOW EVENTS TRIGGER JAVASCRIPT CODE

When the user interacts with the HTML on a web page, there are three steps involved in getting it to trigger some JavaScript code. Together these steps are known as event handling.

1

Select the element node(s) you want the script to respond to.

For example, if you want to trigger a function when a user clicks on a specific link, you need to get the DOM node for that link element. You do this using a DOM query (see Chapter 5).

The UI events that relate to the browser window (rather than the HTML page loaded in it) work with the window object rather than an element node. Examples include the events that occur when a requested page has finished loading, or when the user scrolls. You will learn about using these on p272.

2

Indicate which event on the selected node(s) will trigger the response.

Programmers call this binding an event to a DOM node.

The previous two pages showed a selection of the popular events that you can monitor for.

Some events work with most element nodes, such as the mouseover event, which is triggered when the user rolls over any element. Other events only work with specific element nodes, such as the submit event, which only works with a form.

3

State the code you want to run when the event occurs.

When the event occurs, on a specified element, it will trigger a function. This may be a named or an anonymous function.

Here you can see how event handling can be used to provide feedback to users filling in a registration form. It will show an error message if their username is too short.

1

 SELECT ELEMENT

The element that users are interacting with is the text input where they enter the username.

2

 SPECIFY EVENT

When users move out of the text input, it loses focus, and the blur event fires on this element.

[image: image]

3

 CALL CODE

When the blur event fires on the username input, it will trigger a function called checkUsername(). This function checks if the username is less than 5 characters.

If there are not enough characters, it shows an error message that prompts the user to enter a longer username.

If there are enough characters, the element that holds the error message should be cleared.

This is because an error message may have been shown to the user already and they subsequently corrected their mistake. (If the error message was still visible when they had filled in the form correctly, it would be confusing.)

THREE WAYS TO BIND AN EVENT TO AN ELEMENT

Event handlers let you indicate which event you are waiting for on any particular element. There are three types of event handlers.

HTML EVENT HANDLERS

See p251

This is bad practice, but you need to be aware of it because you may see it in older code.

Early versions of HTML included a set of attributes that could respond to events on the element they were added to. The attribute names matched the event names. Their values called the function that was to run when that event occurred.

For example, the following: indicated that when a user clicked on this <a> element, the hide() function would be called.

This method of event handling is no longer used because it is better to separate the JavaScript from the HTML. You should use one of the other approaches shown on this page instead.

TRADITIONAL DOM EVENT HANDLERS

See p252

DOM event handlers were introduced in the original specification for the DOM. They are considered better than HTML event handlers because they let you separate the JavaScript from the HTML.

Support in all major browsers is very strong for this approach. The main drawback is that you can only attach a single function to any event. For example, the submit event of a form cannot trigger one function that checks the contents of a form, and a second to submit the form data if it passes the checks.

As a result of this limitation, if more than one script is used on the same page, and both scripts respond to the same event, then one or both of the scripts may not work as intended.

DOM LEVEL 2 EVENT LISTENERS

See p254

Event listeners were introduced in an update to the DOM specification (DOM level 2, released in the year 2000). They are now the favored way of handling events.

The syntax is quite different and, unlike traditional event handlers, these newer event listeners allow one event to trigger multiple functions. As a result, there are less likely to be conflicts between different scripts that run on the same page.

This approach does not work with IE8 (or earlier versions of IE) but you meet a workaround on p258. Differences in browser support for the DOM and events helped speed adoption of jQuery (but you need to know how events work to understand how jQuery uses them).

HTML EVENT HANDLER ATTRIBUTES (DO NOT USE)

Please note: This approach is now considered bad practice; however, you need to be aware of it because you may see it if you are looking at older code. (See previous page.)

In the HTML, the first <input> element has an attribute called onblur (triggered when the user leaves the element). The value of the attribute is the name of the function that it should trigger.

The value of the event handler attributes would be JavaScript. Often it would call a function that was written either in the <head> element or a separate JavaScript file (as shown below).

[image: image]

[image: image]

The names of the HTML event handler attributes are identical to the event names shown on p246 - p247, preceded by the word “on.”

For example:

	<a> elements can have onclick, onmouseover, onmouseout

	<form> elements can have onsubmit

	<input> elements for text can have onkeypress, onfocus, onblur

TRADITIONAL DOM EVENT HANDLERS

All modern browsers understand this way of creating an event handler, but you can only attach one function to each event handler.

Here is the syntax to bind an event to an element using an event handler, and to indicate which function should execute when that event fires:

[image: image]

Below, the event handler is on the last line (after the function has been defined and the DOM element node(s) selected).

When a function is called, the parentheses that follow its name tell the JavaScript interpreter to “run this code now.”

We don't want the code to run until the event fires, so the parentheses are omitted from the event handler on the last line.

[image: image]

An example of an anonymous function and a function with parameters is shown on p256.

USING DOM EVENT HANDLERS

In this example, the event handler appears on the last line of the JavaScript. Before the DOM event handler, two things are put in place:

1. If you use a named function when the event fires on your chosen DOM node, write that function first. (You could also use an anonymous function.)

2. The DOM element node is stored in a variable. Here the text input (whose id attribute has a value of username) is placed into a variable called elUsername.

[image: image]

When using event handlers, the event name is preceded by the word “on” (onsubmit, onchange, onfocus, onblur, onmouseover, onmouseout, etc).

3. On the last line of the code sample above, the event handler elUsername.onblur indicates that the code is waiting for the blur event to fire on the element stored in the variable called elUsername.

This is followed by an equal sign, then the name of the function that will run when the event fires on that element. Note that there are no parentheses on the function name. This means you cannot pass arguments to this function. (If you want to pass arguments to a function in an event handler, see p256.)

The HTML is the same as that shown on p251 but without the onblur event attribute. This means that the event handler is in the JavaScript, not the HTML.

Browser support: On line 3, the checkUsername() function uses the this keyword in the conditional statement to check the number of characters the user entered. It works in most browsers because they know this refers to the element the event happened on.

However, in Internet Explorer 8 or earlier, IE would treat this as the window object. As a result, it would not know which element the event occurred on and there would be no value that it checked the length of, so it would raise an error. You will learn a solution for this issue on p264.

EVENT LISTENERS

Event listeners are a more recent approach to handling events. They can deal with more than one function at a time but they are not supported in older browsers.

Here is the syntax to bind an event to an element using an event listener, and to indicate which function should execute when that event fires:

[image: image]

An example of an anonymous function and a function with parameters is shown on p256.

USING EVENT LISTENERS

In this example, the event listener appears on the last line of the JavaScript. Before you write an event listener, two things are put in place:

1. If you use a named function when the event fires on your chosen DOM node, write that function first. (You could also use an anonymous function.)

2. The DOM element node(s) is stored in a variable. Here the text input (whose id attribute has a value of username) is placed into a variable called elUsername.

[image: image]

The addEventListener() method takes three properties:

i) The event you want it to listen for. In this case, the blur event.

ii) The code that you want it to run when the event fires. In this example, it is the checkUsername() function. Note that the parentheses are omitted where the function is called because they would indicate that the function should run as the page loads (rather than when the event fires).

iii) A Boolean indicating how events flow, see p260. (This is usually set to false.)

BROWSER SUPPORT

Internet Explorer 8 and earlier versions of IE do not support the addEventListener() method, but they do support a method called attachEvent() and you will see how to use this on p258.

Also, as with the previous example, IE8 and older versions of IE would not know what this referred to in the conditional statement. An alternative approach for dealing with it is shown on p270.

EVENT NAMES

Unlike the HTML and traditional DOM event handlers, when you specify the name of the event that you want to react to, the event name is not preceded by the word “on”.

If you need to remove an event listener, there is a function called removeEventListener() which removes the event listener from the specified element (it has the same parameters).

USING PARAMETERS WITH EVENT HANDLERS & LISTENERS

Because you cannot have parentheses after the function names in event handlers or listeners, passing arguments requires a workaround.

Usually, when a function needs some information to do its job, you pass arguments within the parentheses that follow the function name.

When the interpreter sees the parentheses after a function call, it runs the code straight away. In an event handler, you want it to wait until the event triggers it.

Therefore, if you need to pass arguments to a function that is called by an event handler or listener, you wrap the function call in an anonymous function.

[image: image]

The named function that requires the arguments lives inside the anonymous function.

Although the anonymous function has parentheses, it only runs when the event is triggered.

The named function can use arguments as it only runs if the anonymous function is called.

USING PARAMETERS WITH EVENT LISTENERS

The first line of this example shows the updated checkUsername() function. The minLength parameter specifies the minimum number of characters that the username should be.

The value that is passed into the checkUsername() function is used in the conditional statement to check if the name is long enough, and provide feedback if the username name is too short.

[image: image]

The event listener on the last three lines is longer than the previous example because the call to the checkUsername() function needs to include the value for the minLength parameter.

To receive this information, the event listener uses an anonymous function, which acts like a wrapper. Inside that wrapper the checkUsername() function is called, and passed an argument.

Browser support: On the next page you also see how to deal with the lack of support for event listeners in IE8 and earlier.

SUPPORTING OLDER VERSIONS OF IE

IE5-8 had a different event model and did not support addEventListener() but you can provide fallback code to make event listeners work with older versions of IE.

IE5-IE8 did not support the addEventListener() method. Instead, it used its own method called attachEvent() which did the same job, but was only available in Internet Explorer. If you want to use event listeners and need to support Internet Explorer 8 or earlier, you can use a conditional statement as illustrated below.

Using an if…else statement, you can check if the browser supports the addEventListener() method. The condition in the if statement will return true if the browser supports the addEventListener() method, and you can use it. If the browser does not support that method, it returns false, and the code will try to use the attachEvent() method.

[image: image]

When attachEvent() is used, the event name should be preceded by the word “on” (e.g., blur becomes onblur). You will see another approach to supporting the older IE event model in Chapter 13 (using a utility file).

FALLBACK FOR USING EVENT LISTENERS IN IE8

The event handling code builds on the last example, but it is a lot longer this time because it contains the fallback for Internet Explorer 5-8.

After the checkUsername() function, an if statement checks whether addEventListener() is supported or not; it returns true if the element node supports this method, and false if it does not.

If the browser supports the addEventListener() method, the code inside the first set of curly braces is run using addEventListener().

If it is not supported, then the browser will use the attachEvent() method that older versions of IE will understand. In the IE version, note that the event name must be preceded by the word “on.”

[image: image]

If you need to support IE8 (or older), instead of writing this fallback code for every event you are responding to, it is better to write your own function (known as a helper function) that creates the appropriate event handler for you. You will see a demonstration of this in Chapter 13, which covers form enhancement and validation.

It is, however, important to understand this syntax, used by IE8 (and older) so that you know why the helper function is used and what it is doing.

As you will see in the next chapter, this is another type of cross-browser inconsistency that jQuery can take care of for you.

EVENT FLOW

HTML elements nest inside other elements. If you hover or click on a link, you will also be hovering or clicking on its parent elements.

Imagine a list item contains a link. When you hover over the link or click on it, JavaScript can trigger events on the <a> element, and also any elements the <a> element sits inside.

[image: image]

The event starts at the most specific node and flows outwards to the least specific one. This is the default type of event flow with very wide browser support.

Event handlers/listeners can be bound to the containing , , <body>, and <html> elements, plus the document object, and the window object. The order in which the events fire is known as event flow, and events flow in two directions.

[image: image]

The event starts at the least specific node and flows inwards to the most specific one. This is not supported in Internet Explorer 8 and earlier.

WHY FLOW MATTERS

The flow of events only really matters when your code has event handlers on an element and one of its ancestor or descendant elements.

The example below has event listeners that respond to the click event on each of the following elements:

	One on the element

	One on the element

	One on the <a> element in the list item

The event will show the HTML content of that element in an alert box, and event flow will tell you which element the click is registered upon first.

[image: image]

For traditional DOM event handlers (and HTML event attributes), all modern browsers default to using event bubbling rather than capturing. With event listeners, the final parameter in the addEventListener() method lets you choose the direction to trigger events:

	true = capturing phase

	false = bubbling phase (false is often a default choice because capturing was not supported in IE8 or earlier.)

The event-flow.js file (shown on the left, and available in the download code) demonstrates the difference between bubbling and capturing. In this example, the event handlers have a value of false for their last parameter indicating events should be followed in bubbling phase. So the first alert box shows the content of the innermost <a> element, and works its way out. You can also see the capturing version in the download code.

[image: image]

THE EVENT OBJECT

When an event occurs, the event object tells you information about the event, and the element it happened upon.

Every time an event fires, the event object contains helpful data about the event, such as:

	Which element the event happened on

	Which key was pressed for a keypress event

	What part of the viewport the user clicked for a click event (the viewport is the part of the browser window that shows the web page)

The event object is passed to any function that is the event handler or listener.

If you need to pass arguments to a named function, the event object will first be passed to the anonymous wrapper function (this happens automatically); then you must specify it as a parameter of the named function (as shown on the next page).

When the event object is passed into a function, it is often given the parameter name e (for event). It is a widely used shorthand (and you see it adopted throughout this book).

Note, however, that some programmers also use the parameter name e to refer to the error object; so e may mean event or error in some scripts.

Not only did IE8 have a different syntax for event listeners (as shown on p258), the event object in IE5-8 also had different names for the properties and methods shown in the tables below, and the example on p265.

[image: image]

EVENT LISTENER WITH NO PARAMETERS

[image: image]

1. Without you doing anything, a reference to the event object is automatically passed from the number 1, where the event listener calls the function…

2. To here, where the function is defined. At this point, the parameter must be named. It Is often given the name e for event.

3. This name can then be used inside the function as a reference to the event object. You can now use the properties and methods of the event object.

EVENT LISTENER WITH PARAMETERS

[image: image]

1. The reference to the event object is automatically passed to the anonymous function, but it must be named in the parentheses.

2. The reference to the event object can then be passed onto the named function. It is given as the first parameter of the named function.

3. The named function receives the reference to the event object as the first parameter of the method. 4. It can now be used by this name in the named function.

THE EVENT OBJECT IN IE5-8

Below you can see how you get the event object in IE5-8. It is not passed automatically to event handler/listener functions; but it is available as a child of the window object.

[image: image]

On the right, an if statement checks if the event object has been passed into the function. As you saw on p168, the existence of an object is treated as a truthy value, so the condition here is saying “if the event object does not exist…”

In IE8 and less, e will not hold an object, so the following code block runs and e is set to be the event object that is a child of the window object.

GETTING PROPERTIES

[image: image]

Once you have a reference to the event object, you can get its properties using the technique on the right. This works on short circuit evaluation (see p169).

A FUNCTION TO GET THE TARGET OF AN EVENT

[image: image]

If you need to assign event listeners to several elements, here is a function that will return a reference to the element the event happened on.

USING EVENT LISTENERS WITH THE EVENT OBJECT

Here is the example that has been used throughout the chapter so far with some modifications:

1. The function is called checkLength() rather than checkUsername(). It can be used on any text input.

2. The event object is passed to the event listener. The code includes fallbacks for IE5-8 (Chapter 13 demonstrates using helper functions to do this).

3. In order to determine which element the user was interacting with, the function uses the event object's target property (and for IE5-8 it uses the equivalent srcElement property).

This function is now far more flexible than the previous code you have seen in this chapter because:

1. It can be used to check the length of any text input so long as that input is directly followed by an empty element that can hold a feedback message for the user. (There should not be space or carriage returns between the two elements; otherwise, some browsers might return a whitespace node.)

2. The code will work with IE5-8 because it tests whether the browser supports the latest features (or whether it needs to fallback to use older techniques).

[image: image]

EVENT DELEGATION

Creating event listeners for a lot of elements can slow down a page, but event flow allows you to listen for an event on a parent element.

If users can interact with a lot of elements on the page, such as:

	a lot of buttons in the UI

	a long list

	every cell of a table

adding event listeners to each element can use a lot of memory and slow down performance.

Because events affect containing (or ancestor) elements (due to event flow - p260), you can place event handlers on a containing element and use the event object's target property to find which of its children the event happened on.

By attaching an event listener to a containing element, you are only responding to one element (rather than having an event handler for each child element).

You are delegating the job of the event listener to a parent of the elements. In the list shown here, if you place the event listener on the element rather than on links in each element, you only need one event listener. This gives better performance, and if you add or remove items from the list it would still work the same. (The code for this example is shown on p269.)

[image: image]

ADDITIONAL BENEFITS OF EVENT DELEGATION

WORKS WITH NEW ELEMENTS

If you add new elements to the DOM tree, you do not have to add event handlers to the new elements because the job has been delegated to an ancestor.

SOLVES LIMITATIONS WITH this KEYWORD

Earlier in the chapter, the this keyword was used to identify an event's target, but that technique did not work in IE8, or when a function needed parameters.

SIMPLIFIES YOUR CODE

It requires fewer functions to be written, and there are fewer ties between the DOM and your code, which helps maintainability.

CHANGING DEFAULT BEHAVIOR

The event object has methods that change: the default behavior of an element and how the element's ancestors respond to the event.

preventDefault()

Some events, such as clicking on links and submitting forms, take the user to another page.

To prevent the default behavior of such elements (e.g., to keep the user on the same page rather than following a link or being taken to a new page after submitting a form), you can use the event object's preventDefault() method.

IE5-8 have an equivalent property called returnValue which can be set to false. A conditional statement can check if the preventDefault() method is supported, and use IE8's approach if it isn't:

if (event.preventDefault) {
 event.preventDefault();
} else {
 event.returnValue = false;
}

stopPropagation()

Once you have handled an event using one element, you may want to stop that event from bubbling up to its ancestor elements (especially if there are separate event handlers responding to the same events on the containing elements).

To stop the event bubbling up, you can use the event object's stopPropogation() method.

The equivalent in IE8 and earlier is the cancelBubble property which can be set to true. Again, a conditional statement can check if the stopPropogation() method is supported and use IE8's approach if not:

if (event.stopPropogation) {
 event.stopPropogation();
} else {
 event.cancelBubble = true;
}

USING BOTH METHODS

You will sometimes see the following used in similar situations that are in a function: return false;

It prevents the default behavior of the element, and prevents the event from bubbling up or capturing further. It also works in all browsers, so it is popular.

Note, however, when the interpreter comes across the return false statement, it stops processing any subsequent code within that function and moves to the next statement after the function was called.

Since this blocks any further code within the function, it is often better to use the preventDefault() method of the event object rather than return false.

USING EVENT DELEGATION

This example will put together a lot of what you have learned in the chapter so far. Each list item contains a link. When the user clicks on that link (to indicate they have completed that task), the item will be removed from the list.

	There is a screen grab of the example on p266.

	On the right there is a flowchart that helps explain the order in which the code is processed.

	The right-hand page has the code for the example

[image: image]

1. The event listener will be added to the element, so this needs to be selected.

2. Check whether or not the browser supports addEventListener().

3. If so, use it to call the itemDone() function when the user clicks anywhere on that list.

4. If not, use the attachEvent() method.

5. The itemDone() function will remove the item from the list. It requires three pieces of information.

6. Three variables are declared to hold the info.

7. target holds the element the user clicked on. To obtain this, the getTarget() function is called. This is created at the start of the script, and shown at the bottom of the flowchart.

8. elParent holds that element's parent (the)

9. elGrandparent holds that element's grandparent

10. The element is removed from the element.

11. Check if the browser supports preventDefault() to prevent the link taking the user to a new page.

12. If so, use it.

13. If not, use the older IE returnValue property.

In the HTML, the links would take you to itemDone.php if the browser did not support JavaScript. (The PHP file is not supplied with the code download because server-side languages are beyond the scope of this book.)

[image: image]

[image: image]

WHICH ELEMENT DID AN EVENT OCCUR ON?

When calling a function, the event object's target property is the best way to determine which element the event occurred on. But you may see the approach below used; it relies on the this keyword.

THE this KEYWORD

[image: image]

The this keyword refers to the owner of a function. On the right, this refers to the element that the event is on.

This works when no parameters are being passed to the function (and therefore it is not called from an anonymous function).

USING PARAMETERS

function checkUsername(el, minLength) {
 var elMsg = document.getElementById(‘feedback’);
 if (el.value.length < minLength) {
 elMsg.innerHTML = ‘Not long enough’;
 } else {
 elMsg.innerHTML = ‘’;
 }
}

var el = document.getElementById(‘username’);
el.addEventListener(‘blur’, function() {
 checkUsername(el, 5);
}, false);

If you pass parameters to the function, the this keyword no longer works because the owner of the function is no longer the element that the event listener was bound to, it is an anonymous function.

You could pass the element the event was called on as another parameter of the function.

In both cases, the event object is the preferred approach.

DIFFERENT TYPES OF EVENTS

In the rest of the chapter, you learn about the different types of events you can respond to.

Events are defined in:

	The W3C DOM specification

	The HTML5 specification

	In Browser Object Models

W3C DOM EVENTS

The DOM events specification is managed by the W3C (who also look after other specifications including HTML, CSS, and XML). Most of the events you will meet in this chapter are part of this DOM events specification.

Browsers implement all the events using the same event object that you already met. It also provides feedback such as which element the event occurred on, which key a user pressed, or where the cursor is positioned).

There are, however, some events that are not covered in the DOM event model - in particular those that deal with form elements. (They used to be part of the DOM, but got moved to the HTML5 specification.)

Most are a result of the user interacting with the HTML, but there are a few that react to the browser or other DOM events.

HTML5 EVENTS

The HTML5 specification (that is still being developed) details events that browsers are expected to support that are specifically used with HTML. For example, events that are fired when a form is submitted or form elements are changed (which you will meet on p282):

submit
input
change

There are also new events introduced with the HTML5 specification that are only supported by more recent browsers. Here are a few (which you will meet on p286):

readystatechange
DOMContentLoaded
hashchange

We do not show every event, but the examples you see should teach you enough so that you can work with all types of events.

BOM EVENTS

Browser manufacturers also implement some events as part of their Browser Object Model (or BOM). Typically these are events not (yet) covered by W3C specifications (although some will be added to W3C specifications in the future). Several of these events dealt with touchscreen devices:

touchstart
touchend
touchmove
orientationchange

Other events are being added to capture gestures and take advantage of accelerometers. Care is needed using such features, as different browsers often create different implementations of similar functionality.

USER INTERFACE EVENTS

User interface (UI) events occur as a result of interaction with the browser window rather than the HTML page contained within it, e.g., a page having loaded or the browser window being resized.

The event handler / listener for UI events should be attached to the browser window.

In old HTML code, you may see these events used as attributes on the opening <body> tag. (For example, older code used the onload attribute to trigger code that would run when the page had loaded.)

[image: image]

LOAD

The load event is commonly used to trigger scripts that access the contents of the page. In this example, a function called setup() gives focus to the text input when the page has loaded.

The event is automatically raised by the window object when a page has finished loading the HTML and all of its resources: images, CSS, scripts (even third party content e.g., banner ads).

The setup() function would not work before the page has loaded because it relies on finding the element whose id attribute has a value of username, in order to give it focus.

[image: image]

[image: image]

Note that the event listener is attached to the window object (not the document object - as this can cause cross-browser compatibility issues).

If the <script> element is at the end of the HTML page, then the DOM would have loaded the form elements before the script runs, and there would be no need to wait for the load event. (See also: the DOMContentLoaded event on p286 and jQuery's document.ready() method on p312.)

Because the load event only fires when everything else on the page has loaded (images, scripts, even ads), the user already have started to use the page before the script has started to run.

Users particularly notice when a script changes the appearance of the page, changes focus, or selects form elements after they have started to use it. (It can make a site look slower to load.)

Imagine this form had more inputs; the user may be filling in the second or third box when the script fires - moving focus back to the first box too late and interrupting the user.

FOCUS & BLUR EVENTS

The HTML elements you can interact with, such as links and form elements, can gain focus. These events fire when they gain or lose focus.

If you can interact with an HTML element, then it can gain (and lose) focus. You can also tab between the elements that can gain focus (a technique often used by those with visual impairments).

In older scripts, the focus and blur events were often used to change the appearance of an element as it gained focus, but now the CSS :focus pseudoclass is a better solution (unless you need to affect an element other than the one that gained focus).

The focus and blur events are most commonly used on forms. They can be particularly helpful when:

	You want to show tips or feedback to users as they interact with an individual element within a form (the tips are usually shown in other elements and not the one they are interacting with)

	You need to trigger form validation as a user moves from one control to the next (rather than waiting for them to submit the entire form first)

[image: image]

FOCUS & BLUR

In this example, as the text input gains and loses focus, feedback is shown to the user in the <div> element under the text input. The feedback is given using two functions.

tipUsername() is triggered when the text input gains focus. It changes the class attribute of the element containing the message, and updates the contents of the element.

checkUsername() is triggered when the text input loses focus. It adds a message and changes the class if the username is less than 5 characters; otherwise, it clears the message.

[image: image]

[image: image]

MOUSE EVENTS

The mouse events are fired when the mouse is moved and also when its buttons are clicked.

All of the elements on a page support the mouse events, and all of these bubble. Note that actions are different on touchscreen devices.

Preventing a default behavior can have unexpected results. E.g., a click event only fires when both the mousedown and mouseup event have fired.

[image: image]

WHEN TO USE CSS

The mouseover and mouseout events were often used to change the appearance of boxes or to switch images as the user rolls over them. To change the appearance of the element, a preferable technique would be to use the CSS :hover pseudo-class.

WHY SEPARATE MOUSEDOWN & UP?

The mousedown and mouseup events separate out the press and release of a mouse button. They are commonly used for adding drag and drop functionality, or to add controls in game development.

CLICK

The aim of this example is to use the click event to remove the big note that has been added to the middle of the page. But first, the script has to create that note.

Because the note is over the top of the page, we only want to show it to users who have JavaScript enabled (otherwise they could not hide it).

When the click event fires on the close link the dismissNote() function is called. This function will remove the note that was added by the same script.

[image: image]

[image: image]

ACCESSIBILITY

The click event can be applied to any element, but it is better to only use it on items that are usually clicked or it will not be accessible to people who rely upon keyboard navigation.

You may also be tempted to use the click event to run a script when a user clicks on a form element, but it is better to use the focus event because that fires when the user accesses that control using the tab key.

WHERE EVENTS OCCUR

The event object can tell you where the cursor was positioned when an event was triggered.

[image: image]

SCREEN

The screenX and screenY properties indicate the position of the cursor within the entire screen on your monitor, measuring from the top left corner of the screen (rather than the browser).

PAGE

The pageX and pageY properties indicate the position of the cursor within the entire page. The top of the page may be outside of the viewport so even if the cursor is in the same position, page and client coordinates can be different.

CLIENT

The clientX and clientY properties indicate the position of the cursor within the browser's viewport. If the user has scrolled down and the top of the page is no longer in view, it will not affect the client coordinates.

DETERMINING POSITION

In this example, as you move your mouse around the screen, the text inputs across the top of the page are updated with the current mouse position.

This demonstrates the three different positions you can retrieve when the mouse is moved or when one of the buttons is clicked.

Note how showPosition() is passed event as a parameter, which refers to the event object. The positions are all properties of this event object.

[image: image]

[image: image]

KEYBOARD EVENTS

The keyboard events are fired when a user interacts with the keyboard (they fire on any kind of device with a keyboard).

	EVENT
	TRIGGER

	input
	Fires when the value of an <input> or <textarea> element changes. First supported in IE9 (although it does not fire when deleting text in IE9). For older browsers, you can use keydown as a fallback.

	keydown
	Fires when the user presses any key on the keyboard. If the user holds down a key, the event continues to fire repeatedly. This is important because it mimics what would happen in a text input if the user holds down a key (the same character would be added repeatedly while the key is held down).

	keypress
	Fires when the user presses a key that would result in a character being shown on the screen. For example, this event would not fire when the user presses the arrow keys, whereas the keydown event would. If the user holds down a key, the event continues to fire repeatedly.

	keyup
	Fires when the user releases a key on the keyboard. The keydown and keypress events fire before a character shows on screen, whereas keyup fires after it appears.

The three events that begin key… fire in this order:

1. keydown - user presses key down

2. keypress - user has pressed or is holding a key that adds a character into the page

3. keyup - user releases key

WHICH KEY WAS PRESSED?

When you use the keydown or keypress events, the event object has a property called keyCode, which can be used to tell which key was pressed. However, it does not return the letter for that key (as you might expect); it returns an ASCII code that represents the lowercase character for that key. You can see a table of the characters and their ASCII codes in an online extra on the website accompanying this book.

If you want to get the letter or number as it would be displayed on the keyboard (rather than an ASCII equivalent), the String object has a built-in method called fromCharCode() which will do the conversion for you: String.fromCharCode(event.keycode);

WHICH KEY WAS PRESSED

In this example, the <textarea> element should only have 180 characters. When the user enters text, the script will show them how many characters they have left available to use.

The event listener checks for the keypress event on the <textarea> element. Each time it fires, the charCount() function updates the character count and shows the last character used.

The input event would work well to update the count when the user pastes in text or uses keys like backspace, but it does not tell you which key was the last to be pressed.

[image: image]

[image: image]

FORM EVENTS

There are two events that are commonly used with forms. In particular you are likely to see submit used in form validation.

[image: image]

	EVENT
	TRIGGER

	submit
	When a form is submitted, the submit event fires on the node representing the <form> element. It is most commonly used when checking the values a user has entered into a form before sending it to the server.

	change
	Fires when the status of several form elements change. For example, when:
	a selection is made from a drop-down select box

	a radio button is selected

	a checkbox is selected or deselected

It is often better to use the change event rather than the click event because clicking is not the only way users interact with form elements (for example, they might use the tab, arrow, or Enter keys).

	input
	The input event, which you saw on the previous page is commonly used with <input> and <textarea> elements.

FOCUS AND BLUR

The focus and blur events (which you met on p274) are often used with forms, but they can also be used in conjunction with other elements, such as links (so they are not specifically related to forms).

VALIDATION

Checking form values is known as validation. If users miss required information or enter incorrect information, checking it using JavaScript is faster than sending the data to the server for it to be checked. Validation is covered in Chapter 13.

USING FORM EVENTS

When a user interacts with the drop-down select box, the change event will trigger the packageHint() function. This shows messages below the select box that reflect the choice.

When the form is submitted, the checkTerms() function is called. This tests to see if the user has checked the box that indicates they agree to the terms and conditions.

If not, the script will prevent the default behavior of the form element (and stop it from submitting the form data to the server) and it will show an error message to the user.

[image: image]

MUTATION EVENTS & OBSERVERS

Whenever elements are added to or removed from the DOM, its structure changes. This change triggers a mutation event.

When your script adds or removes content from a page it is updating the DOM tree. There are many reasons why you might want to respond to the DOM tree being updated, for example, you might want to tell the user that the page had changed.

Below are some events that are triggered when the DOM changes. These mutation events were introduced in Firefox 3, IE9, Safari 3, and all versions of Chrome. But they are already scheduled to be replaced by an alternative called mutation observers.

	EVENT
	TRIGGER

	DOMNodeInserted
	Fires when a node is inserted into the DOM tree.
e.g. using appendChild(), replaceChild(), or insertBefore().

	DOMNodeRemoved
	Fires when a node is removed from the DOM tree.
e.g. using removeChild() or replaceChild().

	DOMSubtreeModified
	Fires when the DOM structure changes.
It fires after the two events listed above occur.

	DOMNodeInsertedIntoDocument
	Fires when a node is inserted into the DOM tree as a descendant of another node that is already in the document.

	DOMNodeRemovedFromDocument
	Fires when a node is removed from the DOM tree as a descendant of another node that is already in the document.

PROBLEMS WITH MUTATION EVENTS

If your script makes a lot of changes to a page, you end up with a lot of mutation events firing. This can make a page feel slow or unresponsive. They can also trigger other event listeners as they propagate through the DOM, which modify other parts of the DOM, triggering more mutation events. Therefore they are being replaced by mutation observers.

Browser support: Chrome, Firefox 3, IE 9, Opera 9, Safari 3

NEW MUTATION OBSERVERS

Mutation observers are designed to wait until a script has finished its task before reacting, then report the changes as a batch (rather than one at a time). You can also specify the type of changes to the DOM that you want them to react to. But at the time of writing, the browser support was not widespread enough to use them on public websites.

Browser support: IE 11, Firefox 14, Chrome 27 (or 18 with webkit prefix), Safari 6.1, Opera 15 On mobile: Android 4.4, Safari on iOS 7.

USING MUTATION EVENTS

In this example, two event listeners each trigger their own function. The first is on the last but one line, and it listens for when the user clicks the link to add a new list item. It then uses DOM manipulation events to add a new element (changing the DOM structure and triggering mutation events).

The second event listener waits for the DOM tree within the element to change. When the DOMNodeInserted event fires, it calls a function called updateCount(). This function counts how many items there are in the list, and then updates the list count at the top of the page accordingly.

[image: image]

[image: image]

HTML5 EVENTS

Here are three page-level events that have been included in versions of the HTML5 spec that have become popular very quickly.

[image: image]

There are also several other events that are being introduced to support more recent devices (such as phones and tablets). They respond to events such as gestures and movements that are based upon an accelerometer (which detects the angle at which a device is being held).

USING HTML5 EVENTS

In this example, as soon as the DOM tree has been formed, focus is given to the text input with an id of username.

The DOMContentLoaded event fires before the load event (because the latter waits for all of the page's resources to load).

If users try to leave the page before they press the submit button, the beforeunload event checks that they want to leave.

[image: image]

[image: image]

On the left, you can see the dialog box that is shown when you try to navigate away from the page.

The text before your message and on the buttons may change from browser to browser (you have no control over this).

[image: image]

EXAMPLE

EVENTS

This example shows an interface for a user to record voice notes. The user can enter a name which is displayed in the heading, and they can press record (which changes the image that is shown).

When the user starts typing a name into the text box, the keyup event will trigger a function called writeLabel() which copies the text from the form input and writes it into the main heading under the logo for List King, replacing the words ‘AUDIO NOTE’.

The record / pause button is a bit more interesting. The button has an attribute called data-state. When the page loads, its value is record. When the user presses the button, the value of this attribute changes to pause (this triggers a new CSS rule to indicate that it is now recording).

If you have not used HTML5's data- attributes, they allow you to store custom data on any HTML element. (The name of the attribute can be anything starting with data- as long as the name is lowercase.)

This demonstrates a new technique based upon event delegation. The event listener is placed upon the containing element whose id is buttons. The event object is used to determine the value of the id attribute on the element that was used. The value from that id attribute is then used in a switch statement to decide which function to call (depending on whether the button is in record state or pause state).

This is a good way to handle many buttons because it reduces the number of event listeners in your code.

The event listeners are written at the bottom of the page, and they have fallbacks for users who are running IE8 or less (which has a different event model).

The script starts by defining the variables that it will need to use, and then collecting the element nodes that are needed.

The player functions (shown on the right-hand page) would appear next, and at the bottom of this page you can see the event listeners.

The event listeners live inside a conditional statement so that the attachEvent() method can be used for visitors who have IE8 or less.

[image: image]

The recorderControls() function is automatically passed the event object. Not only does this offer code to support older versions of IE, but also stops the link from performing its default behavior (of taking the user to a new page).

The switch statement is used to indicate which function to run depending on whether the user is trying to record or stop the audio note. This technique of delegation is a good way to cope with multiple buttons in the UI.

[image: image]

SUMMARY

EVENTS

	Events are the browser's way of indicating when something has happened (such as when a page has finished loading or a button has been clicked).

	Binding is the process of stating which event you are waiting to happen, and which element you are waiting for that event to happen upon.

	When an event occurs on an element, it can trigger a JavaScript function. When this function then changes the web page in some way, it feels interactive because it has responded to the user.

	You can use event delegation to monitor for events that happen on all of the children of an element.

	The most commonly used events are W3C DOM events, although there are others in the HTML5 specification as well as browser-specific events.

 7

JQUERY

jQuery offers a simple way to achieve a variety of common JavaScript tasks quickly and consistently, across all major browsers and without any fallback code needed.

SELECT ELEMENTS

It is simpler to access elements using jQuery's CSS-style selectors than it is using DOM queries. The selectors are also more powerful and flexible.

PERFORM TASKS

jQuery's methods let you update the DOM tree, animate elements into and out of view, and loop through a set of elements, all in one line of code.

HANDLE EVENTS

jQuery includes methods that allow you to attach event listeners to selected elements without having to write any fallback code to support older browsers.

This chapter assumes that you have read the book up to this point or are familiar with the basics of JavaScript. As you will see, jQuery is powerful when combined with traditional JavaScript techniques, but you need to understand JavaScript to make full use of jQuery.

[image: image]

WHAT IS JQUERY?

jQuery is a JavaScript file that you include in your web pages. It lets you find elements using CSS-style selectors and then do something with the elements using jQuery methods.

1: FIND ELEMENTS USING CSS-STYLE SELECTORS

A function called jQuery() lets you find one or more elements in the page. It creates an object called jQuery which holds references to those elements. $() is often used as a shorthand to save typing jQuery(), as shown here.

[image: image]

The jQuery() function has one parameter: a CSS-style selector. This selector finds all of the elements with a class of hot.

SIMILARITIES TO DOM

	jQuery selectors perform a similar task to traditional DOM queries, but the syntax is much simpler.

	You can store the jQuery object in a variable, just as you can with DOM nodes.

	You can use jQuery methods and properties (like DOM methods and properties) to manipulate the DOM nodes that you select.

The jQuery object has many methods that you can use to work with the elements you select. The methods represent tasks that you commonly need to perform with elements.

2: DO SOMETHING WITH THE ELEMENTS USING JQUERY METHODS

Here a jQuery object is created by the jQuery() function. The object and the elements it contains is referred to as a matched set or a jQuery selection.

You can then use the methods of the jQuery object to update the elements that it contains. Here, the method adds a new value to the class attribute.

[image: image]

The member operator indicates that the method on the right should be used to update the elements in the jQuery object on the left.

Each method has parameter(s) that provide details about how to update the elements. This parameter specifies a value to add to the class attribute.

KEY DIFFERENCES FROM DOM

	It's cross-browser, and there's no need to write fallback code.

	Selecting elements is simpler (because it uses CSS-style syntax) and is more accurate.

	Event handling is simpler as it uses one method that works in all major browsers.

	Methods affect all the selected elements without the need to loop through each one (see p310).

	Additional methods are provided for popular required tasks such as animation (see p332).

	Once you have made a selection, you can apply multiple methods to it.

A BASIC JQUERY EXAMPLE

The examples in this chapter revisit the list application used in the previous two chapters, and they will use jQuery to update the content of the page.

1. In order to use jQuery, the first thing you need to do is include the jQuery script in your page. You can see that it is included before the closing </body> tag.

2. Once jQuery has been added to the page, a second JavaScript file is included that uses jQuery selectors and methods to update the content of the HTML page.

[image: image]

WHERE TO GET JQUERY AND WHICH VERSION TO USE

Above, jQuery is included before the closing </body> tag just like other scripts. (Another way to include the script is shown on p355.) A copy of jQuery is included with the code for this book, or you can download it from http://jquery.org. The version number of jQuery should be kept in the file name. Here, it is jquery-1.11.0.js, but by the time you read this book, there may be a newer version. The examples should still work with newer versions.

You often see websites use a version of the jQuery file with the file extension .min.js. It means unnecessary spaces and carriage returns have been stripped from the file. e.g., jquery-1.11.0.js becomes jquery-1.11.0.min.js.

It is done using a process called minification (hence min is used in the file name). The result is a much smaller file which makes it faster to download. But minified files are much harder to read.

If you want to look at the jQuery file, you can open it with a text editor - it is just text like JavaScript, albeit very complicated JavaScript.

Most people who use jQuery do not try to understand how the jQuery JavaScript file achieves what it does. As long as you know how to select elements and how to use its methods and properties, you can reap the benefits of using jQuery without looking under the hood.

Here, the JavaScript file uses the $() shortcut for the jQuery() function. It selects elements and creates three jQuery objects that hold references to the elements.

The methods of the jQuery object fade the list items in, and remove them when they are clicked on. Don't worry if you don't understand the code yet.

First, you will learn how to select elements using jQuery selectors, and then how to update those elements using the methods and properties of the jQuery object.

[image: image]

1. The first line selects all of the <h1> - <h6> headings, and adds a value of headline to their class attributes.

2. The second line selects the first three list items and does two things:

	The elements are hidden (in order to allow the next step).

	The elements fade into view.

3. The last three lines of the script set an event listener on each of the elements. When a user clicks on one, it triggers an anonymous function to remove that element from the page.

[image: image]

Here is a reminder of the colors used to convey the priority and status of each list item:

[image: image]

WHY USE JQUERY?

jQuery doesn't do anything you cannot achieve with pure JavaScript. It is just a JavaScript file but estimates show it has been used on over a quarter of the sites on the web, because it makes coding simpler.

1: SIMPLE SELECTORS

As you saw in Chapter 5, which introduced the DOM, it is not always easy to select the elements that you want to. For example:

	Older browsers do not support the latest methods for selecting elements.

	IE does not treat whitespace between elements as text nodes, while other browsers do.

Such issues make it hard to select the right elements on a page across all major browsers.

Rather than learn a new way to select elements, jQuery uses a language that is already familiar to front-end web developers: CSS selectors. They:

	Are much faster at selecting elements

	Can be a lot more accurate about which elements to select

	Often require a lot less code than older DOM methods

	Are already used by most front-end developers

jQuery even adds some extra CSS-style selectors which offer additional functionality.

Since jQuery was created, modern browsers have implemented the querySelector() and querySelectorAll() methods to let developers select elements using CSS syntax. However, these methods are not supported in older browsers.

2: COMMON TASKS IN LESS CODE

There are some tasks that front-end developers need to do regularly, such as loop through the elements that have been selected.

jQuery has methods that offer web developers simpler ways to perform common tasks, such as:

	Loop through elements

	Add / remove elements from the DOM tree

	Handle events

	Fade elements into / out of view

	Handle Ajax requests

jQuery simplifies each of these tasks, and allows you to write less code to achieve them.

jQuery also offers chaining of methods (a technique which you will meet on p311). Once you have selected some elements, this allows you to apply multiple methods to the same selection.

jQuery's motto is “Write less, do more,” because it allows you to achieve the same goals but in fewer lines of code than you would need to write with plain JavaScript.

3: CROSS-BROWSER COMPATIBILITY

jQuery automatically handles the inconsistent ways in which browsers select elements and handle events, so you do not need to write cross-browser fallback code (such as that shown in the previous two chapters).

To do this, jQuery uses feature detection to find the best way to achieve a task. It involves the use of many conditional statements: if the browser supports the ideal way to achieve a task, it uses that approach; otherwise, it tests to see if it supports the next best option to achieve the same task.

This was the technique used in the last chapter to determine whether or not the browser supported event listeners. If event listeners were not supported, an alternative approach was offered (aimed at users of Internet Explorer 8 and older versions of IE).

[image: image]

Here, a conditional statement checks if the browser supports querySelector(). If it does, that method is used. If it doesn't, it checks to see if the next best option is supported and uses that instead.

JQUERY 1.9.X+ OR 2.0.X+

As jQuery developed, it built up a lot of code to support IE6, 7, and 8; which made the script bigger and more complicated. As version 2.0 of jQuery was approaching, the development team decided to create a version that would drop support for older browsers in order to create a smaller, faster script.

The jQuery team was, however, aware that many people on the web still used these older browsers, and that developers therefore needed to support them. For this reason, they now maintain two parallel versions of jQuery:

jQuery 1.9+: Encompasses the same features as 2.0.x but still offers support for IE6, 7, and 8

jQuery 2.0+: Drops support for older browsers to make the script smaller and faster to use

The functionality of both versions is not expected to diverge significantly in the short term.

The jQuery file name should contain the version number in it (e.g., jquery-1.11.0.js or jquery-1.11.0.min.js). If you don't do this, a user's browser might try to use a cached version of the file that is either older or newer - which could prevent other scripts from working correctly.

FINDING ELEMENTS

Using jQuery, you usually select elements using CSS-style selectors. It also offers some extra selectors, noted below with a ‘jQ’.

Examples of using these selectors are demonstrated throughout the chapter. The syntax will be familiar to those who have used selectors in CSS.

BASIC SELECTORS

	*
	All elements

	element
	All elements with that element name

	#id
	Elements whose id attribute has the value specified

	.class
	Elements whose class attribute has the value specified

	selector1, selector2
	Elements that match more than one selector (see also the .add() method, which is more efficient when combining selections)

HIERARCHY

	ancestor descendant
	An element that is a descendant of another element (e.g., li a)

	parent > child
	An element that is a direct child of another element (you can use * in the place of the child to select all child elements of the specified parent)

	previous + next
	Adjacent sibling selector only selects elements that are immediately followed by the previous element

	previous ~ siblings
	Sibling selector will select any elements that are a sibling of the previous element

BASIC FILTERS

	:not(selector)
	 All elements except the one in the selector (e.g., div:not(‘#summary’))

	:first
	jQ The first element from the selection

	:last
	jQ The last element from the selection

	:even
	jQ Elements with an even index number in the selection

	:odd
	jQ Elements with an odd index number in the selection

	:eq(index)
	jQ Elements with an index number equal to the one in the parameter

	:gt(index)
	jQ Elements with an index number greater than the parameter

	:lt(index)
	jQ Elements with an index number less than the parameter

	:header
	jQ All <h1> - <h6> elements

	:animated
	jQ Elements that are currently being animated

	:focus
	 The element that currently has focus

CONTENT FILTERS

	:contains(‘text’)
	 Elements that contain the specified text as a parameter

	:empty
	 All elements that have no children

	:parent
	jQ All elements that have a child node (can be text or element)

	:has(selector)
	jQ Elements that contain at least one element that matches the selector (e.g., div:has(p) matches all div elements that contain a <p> element)

VISIBILITY FILTERS

	:hidden
	jQ All elements that are hidden

	:visible
	jQ All elements that consume space in the layout of the page Not selected if: display: none; height / width: 0; ancestor is hidden Selected if: visibility: hidden; opacity: 0 because they would take up space in layout

CHILD FILTERS

	:nth-child(expr)
	The value here is not zero-based e.g. ul li:nth-child(2)

	:first-child
	First child from the current selection

	:last-child
	Last child from the current selection

	:only-child
	When there is only one child of the element (div p:only-child)

ATTRIBUTE FILTERS

	[attribute]
	 Elements that carry the specified attribute (with any value)

	[attribute=‘value’]
	 Elements that carry the specified attribute with the specified value

	[attribute!=‘value’]
	jQ Elements that carry the specified attribute but not the specified value

	[attribute^=‘value’]
	 The value of the attribute begins with this value

	[attribute=‘value’]
	 The value of the attribute ends with this value

	[attribute*=‘value’]
	 The value should appear somewhere in the attribute value

	[attribute|=‘value’]
	 Equal to given string, or starting with string and followed by a hyphen

	[attribute~=‘value’]
	 The value should be one of the values in a space separated list

	[attribute][attribute2]
	 Elements that match all of the selectors

FORM

	:input
	jQ All input elements

	:text
	jQ All text inputs

	:password
	jQ All password inputs

	:radio
	jQ All radio buttons

	:checkbox
	jQ All checkboxes

	:submit
	jQ All submit buttons

	:image
	jQ All elements

	:reset
	jQ All reset buttons

	:button
	jQ All <button> elements

	:file
	jQ All file inputs

	:selected
	jQ All selected items from drop-down lists

	:enabled
	 All enabled form elements (the default for all form elements)

	:disabled
	 All disabled form elements (using the CSS disabled property)

	:checked
	 All checked radio buttons or checkboxes

DOING THINGS WITH YOUR SELECTION

Once you have seen the basics of how jQuery works, most of this chapter is dedicated to demonstrating these methods.

These two pages both offer an overview to the jQuery methods and will also help you find the methods you are looking for once you have read the chapter.

You often see jQuery method names written starting with a period (.) before the name. This convention is used in this book to help you easily identify those methods as being jQuery methods rather than built-in JavaScript methods, or methods of custom objects.

When you make a selection, the jQuery object that is created has a property called length, which will return the number of elements in the object.

If the jQuery selection did not find any matching elements, you will not get an error by calling any of these methods - they just won't do or return anything.

There are also methods that are specifically designed to work with Ajax (which lets you refresh part of the page rather than an entire page) shown in Chapter 8.

CONTENT FILTERS

Get or change content of elements, attributes, text nodes

GET/CHANGE CONTENT

	.html()
	p316

	.text()
	p316

	.replaceWith()
	p316

	.remove()
	p316

ELEMENTS

	.before()
	p318

	.after()
	p318

	.prepend()
	p318

	.append()
	p318

	.remove()
	p346

	.clone()
	p346

	.unwrap()
	p346

	.detach()
	p346

	.empty()
	p346

	.add()
	p338

ATTRIBUTES

	.attr()
	p320

	.removeAttr()
	p320

	.addClass()
	p320

	.removeClass()
	p320

	.css()
	p322

FORM VALUES

	.val()
	p343

	.isNumeric()
	p343

FINDING ELEMENTS

Find and select elements to work with & traverse the DOM

GENERAL

	.find()
	p336

	.closest()
	p336

	.parent()
	p336

	.parents()
	p336

	.children()
	p336

	.siblings()
	p336

	.next()
	p336

	.nextAll()
	p336

	.prev()
	p336

	.prevAll()
	p336

FILTER/TEST

	.filter()
	p338

	.not()
	p338

	.has()
	p338

	.is()
	p338

	:contains()
	p338

ORDER IN SELECTION

	.eq()
	p340

	.lt()
	p340

	.gt()
	p340

Once you have selected the elements you want to work with (and they are in a jQuery object), the jQuery methods listed on these two pages perform tasks on those elements.

DIMENSION/POSITION

Get or update the dimensions or position of a box

DIMENSION

	.height()
	p348

	.width()
	p348

	.innerHeight()
	p348

	.innerWidth()
	p348

	.outerHeight()
	p348

	.outerWidth()
	p348

	$(document).height()
	p350

	$(document).width()
	p350

	$(window).height()
	p350

	$(window).width()
	p350

POSITION

	.offset()
	p351

	.position()
	p351

	.scrollLeft()
	p350

	.scrollTop()
	p350

EFFECTS & ANIMATION

Add effects and animation to parts of the page

BASIC

	.show()
	p332

	.hide()
	p332

	.toggle()
	p332

FADING

	.fadeIn()
	p332

	.fadeOut()
	p332

	.fadeTo()
	p332

	.fadeToggle()
	p332

SLIDING

	.slideDown()
	p332

	.slideUp()
	p332

	.slideToggle()
	p332

CUSTOM

	.delay()
	p332

	.stop()
	p332

	.animate()
	p332

EVENTS

Create event listeners for each element in the selection

DOCUMENT/FILE

	.ready()
	p312

	.load()
	p313

USER INTERACTION

	.on()
	p326

There used to be methods for individual types of event, so you may see methods such as .click(), .hover(), .submit(). However, these have been dropped in favour of the .on() method to handle events.

A MATCHED SET / JQUERY SELECTION

When you select one or more elements, a jQuery object is returned. It is also known as a matched set or a jquery selection.

SINGLE ELEMENT

If a selector returns one element, the jQuery object contains a reference to just one element node.

[image: image]

This selector picks the element from the page. So the jQuery object contains a reference to just one node (the only element in the page):

[image: image]

Each element is given an index number. Here there is just one element in the object.

	INDEX
	ELEMENT NODE

	0
	ul

MULTIPLE ELEMENTS

If a selector returns several elements, the jQuery object contains references to each element.

[image: image]

This selector picks all the elements. Here, the jQuery object has references for each of the nodes that was selected (each element):

[image: image]

The resulting jQuery object contains four list items. Remember that index numbers start at zero.

	INDEX
	ELEMENT NODE

	0
	li#one.hot

	1
	li#two.hot

	2
	li#three.hot

	3
	li#four

JQUERY METHODS THAT GET AND SET DATA

Some jQuery methods both retrieve information from, and update the contents of, elements. But they do not always apply to all elements.

GET INFORMATION

If a jQuery selection holds more than one element, and a method is used to get information from the selected elements, it will retrieve information from only the first element in the matched set.

In the list example we have been using, the following selector chooses the four elements from a list.

[image: image]

When you use the .html() method (which will be introduced on p316) to get information from an element, it will return the content of the first element in the matched set.

[image: image]

This will retrieve the content of the first list item, and store it in the variable called content.

To get a different element, you can use methods to traverse (p336) or filter (p338) the selection, or write a more specific selector (p302).

To get the content of all of the elements, see the .each() method (p324).

SET INFORMATION

If a jQuery selection holds more than one element, and a method is used to update information on the page, it will update all of the elements in the matched set, not just the first one.

[image: image]

When you use the .html() method (which you meet on p316) to update the element, it will replace the contents of each element in the matched set. Here, it updates the content of each item in the list.

[image: image]

This will update the content of all of the list items in the matched set with the word Updated.

To update just one element, you can use methods to traverse (p336) or filter (p338) the selection, or write a more specific selector (p302).

JQUERY OBJECTS STORE REFERENCES TO ELEMENTS

When you create a selection with jQuery, it stores a reference to the corresponding nodes in the DOM tree. It does not create copies of them.

As you have seen, when HTML pages load, the browser creates a model of the page in memory. Imagine your browser's memory is a set of tiles:

	[image: image]
	Nodes in the DOM take up a tile

	[image: image]
	Variables take up a tile

	[image: image]
	Complex JavaScript objects may take several tiles because they hold more data

In reality, the items in the browser's memory are not spread out as they are in this diagram, but the diagram helps explain the concept.

When you create a jQuery selection, the jQuery object holds references to the elements in the DOM - it does not create a copy of them.

When programmers say that a variable or object is storing a reference to something, what it is doing is storing the location a piece of information in the browser's memory. Here, the jQuery object would know that the list items are stored in A4, B4, and C4. Again, this is purely for illustration purposes; the browser's memory is not quite as simple as a checkerboard with these locations.

[image: image]

The jQuery object is an array-like object because it stores a list of the elements in the same order that they appear in the HTML document (unlike other objects where the order of the properties is not usually preserved).

CACHING JQUERY SELECTIONS IN VARIABLES

A jQuery object stores references to elements.
Caching a jQuery object stores a reference to it in a variable.

To create a jQuery object takes time, processing resources, and memory. The interpreter must:

	Find the matching nodes in the DOM tree

	Create the jQuery object

	Store references to the nodes in the jQuery object

So, if the code needs to use the same selection more than once, it is better to use that same jQuery object again rather than repeat the above process. To do this, you store a reference to the jQuery object in a variable.

Below, a jQuery object is created. It stores the locations of the elements in the DOM tree.

$(‘li’);

A reference to this object is in turn stored in a variable called $listItems. Note that when a variable contains a jQuery object, it is often given a name beginning with the $ symbol (to help differentiate it from other variables in your script).

$listItems = $(‘li’);

[image: image]

Caching jQuery selections is similar to the idea of storing a reference to a DOM node once you have made a DOM query (as you saw in Chapter 5).

LOOPING

In plain JavaScript, if you wanted to do the same thing to several elements, you would need to write code to loop through all of the elements you selected.

With jQuery, when a selector returns multiple elements, you can update all of them using the one method. There is no need to use a loop.

In this code, the same value is added to the class attribute for all of the elements that are found using the selector. It doesn't matter if there are one or many.

[image: image]

[image: image]

In this example, the first selector applies only to one element and the class attribute's new value triggers a CSS rule that adds a calendar icon to the left of it.

The second selector applies to three elements. The new value added to the class attribute for each of these elements triggers a CSS rule that adds a heart icon on the right-hand side.

The ability to update all of the elements in the jQuery selection is known as implicit iteration.

When you want to get information from a series of elements, you can use the .each() method (which you meet on p324) rather than writing a loop.

CHAINING

If you want to use more than one jQuery method on the same selection of elements, you can list several methods at a time using dot notation to separate each one, as shown below.

In this one statement, three methods act on the same selection of elements: hide() hides the elements delay() creates a pause fadeIn() fades in the elements

The process of placing several methods in the same selector is referred to as chaining. As you can see, it results in code that is far more compact.

[image: image]

[image: image]

To make your code easier to read, you can place each new method on a new line:

$(‘li[id!=”one”]’)
 .hide()
 .delay(500)
 .fadeIn(1400);

Each line starts with the dot notation, and the semicolon at the end of the statement indicates that you have finished working with this selection.

Most methods used to update the jQuery selection can be chained. However the methods that retrieve information from the DOM (or about the browser) cannot be chained.

It is worth noting that if one method in the chain does not work, the rest will not run either.

CHECKING A PAGE IS READY TO WORK WITH

jQuery's .ready() method checks that the page is ready for your code to work with.

[image: image]

As with plain JavaScript, if the browser has not yet constructed the DOM tree, jQuery will not be able to select elements from it.

If you place a script at the end of the page (just before the closing </body> tag), the elements will be loaded into the DOM tree.

If you wrap your jQuery code in the method above, it will still work when used elsewhere on the page or even in another file.

A shorthand for this is shown on the right-hand page. It is more commonly used than this longer version.

[image: image]

[image: image]

Above, you can see the shorthand that is commonly used instead of $(document).ready()

A positive side-effect of writing jQuery code inside this method is that it creates function-level scope for its variables.

This function-level scope prevents naming collisions with other scripts that might use the same variable names.

Any statements inside the method automatically run when the page has loaded. This is the version that will be used in the examples in the rest of the chapter.

GETTING ELEMENT CONTENT

The .html() and .text() methods both retrieve and update the content of elements. This page will focus on how to retrieve element content. To learn how to update element content, see p316.

.html()

When this method is used to retrieve information from a jQuery selection, it retrieves only the HTML inside the first element in the matched set, along with any of its descendants.

For example, $(‘ul’).html(); will return this:

<li id=”one”>fresh figs
<li id=”two”>pine nuts
<li id=”three”>honey
<li id=”four”>balsamic vinegar

Whereas $(‘li’).html(); will return this:

fresh figs

Note how this returns only the content of the first element.

If you want to retrieve the value of every element, you can use the .each() method (see p324).

.text()

When this method is used to retrieve the text from a jQuery selection, it returns the content from every element in the jQuery selection, along with the text from any descendants.

For example, $(‘ul’).text(); will return this:

fresh figs
pine nuts
honey
balsamic vinegar

Whereas $(‘li’).text(); will return this:

fresh figspine nutshoneybalsamic vinegar

Note how this returns the text content of all elements (including spaces between words), but there are no spaces between the individual list items.

To get the content from <input> or <textarea> elements, use the .val() method shown on p343.

GETTING AT CONTENT

On this page you can see variations on how the .html() and .text() methods are used on the same list (depending on whether or elements are used in the selector).

[image: image]

The selector returns the element. The .html() method gets all the HTML inside it (the four elements). This is then appended to the end of the selection, in this case after the existing elements.

[image: image]

The selector returns the element. The .text() method gets the text from all of the element's children. This is then appended to the end of the selection, in this case after the existing element.

[image: image]

The selector returns the four elements, but the .html() method returns only the contents of the first one. This is then appended to the end of the selection, in this case after each existing element.

[image: image]

The selector returns the four elements. The .text() method gets the text from these. This is then appended to each of the elements in the selection.

Please note: The .append() method (covered on p318) lets you add content to the page.

UPDATING ELEMENTS

Here are four methods that update the content of all elements in a jQuery selection.

When the .html() and .text() methods are used as setters (to update content) they will replace the content of each element in the matched set (along with any content and child elements).

The .replaceWith() and .remove() methods replace and remove the elements they match (as well as their content and any child elements).

The .html(), .text(), and .replaceWith() methods can take a string as a parameter. The string can:

	Be stored in a variable

	Contain markup

When you add markup to the DOM, be sure to escape all untrusted content properly on the server. Both the .html() and .replaceWith() methods carry the same security risks as using the DOM's innerHTML property. See p228 - p231 on XSS.

.html()

This method gives every element in the matched set the same new content. The new content may include HTML.

.text()

This method gives every element in the matched set the same new text content. Any markup would be shown as text.

.replaceWith()

This method replaces every element in a matched set with new content. It also returns the replaced elements.

.remove()

This method removes all of the elements in the matched set.

USING A FUNCTION TO UPDATE CONTENT

If you want to use and amend the content of the current selection, these methods can take a function as a parameter. The function can be used to create new content. Here the text from each element is placed inside tags.

[image: image]

1. return indicates that content should be returned by the function.

2. tags are placed around the text content of the list item.

3. this refers to the current list item. $(this) places that element in a new jQuery object so that you can use jQuery methods on it.

CHANGING CONTENT

In this example, you can see three methods that allow you to update the content of the page.

When updating the content of an element, you can use a string, a variable, or a function.

[image: image]

1. This line selects any list items that contain the word pine. It then changes the text of the matching element to almonds using the .text() method.

2. These lines select all list items whose class attribute contains the word hot, and uses the .html() method to update the content of each of them.

The .html() method uses a function to place the content of each element inside an element. (See the bottom of the left-hand page for a closer look at the syntax.)

[image: image]

3. This line selects the element that has an id attribute whose value is one, then uses the remove() method to remove it. (This does not require a parameter.)

When specifying new content, carefully choose when to use single quotes and when to use double quotes. If you append a new element that has attributes, use single quotes to surround the content. Then use double quotes for the attribute values themselves.

INSERTING ELEMENTS

Inserting new elements involves two steps:
1: Create the new elements in a jQuery object
2: Use a method to insert the content into the page

You can create new jQuery objects to hold text and markup that you then add to the DOM tree using one of the methods listed in step 2 on the right.

If you create a selection that returns multiple elements, these methods will add the same content to each of the elements in the matched set.

When adding content to the DOM, make sure you have escaped all untrusted content properly on the server. (See p228 - p231 on XSS.)

[image: image]

1: CREATING NEW ELEMENTS IN A JQUERY OBJECT

The following statement creates a variable called $newFragment and stores a jQuery object in it. The jQuery object is set to contain an empty element: var $newFragment = $(‘’);

The following statement creates a variable called $newItem and stores a jQuery object in it. This jQuery object in turn contains an element with a class attribute and some text:
var $newItem = $(‘<li class=”new”>item’);

2: ADDING THE NEW ELEMENTS TO THE PAGE

Once you have a variable holding the new content, you can use the following methods to add the content to the DOM tree:

.before()

This method inserts content before the selected element(s).

.after()

This method inserts content after the selected element(s).

.prepend()

This method inserts content inside the selected element(s), after the opening tag.

.append()

This method inserts content inside the selected element(s), before the closing tag.

There are also .prependTo() and .appendTo() methods. They work the other way around from .prepend() and .append(). So:

a.prepend(b) adds b to a
a.prependTo(b) adds a to b
a.append(b) adds b to a
a.appendTo(b) adds a to b

ADDING NEW CONTENT

In this example, you can see three jQuery selections are made. Each selection uses a different method to amend the content of the list.

The first adds a new notice before the list, the second adds a + symbol before the hot items, and the third adds a new element to the end of the list.

[image: image]

1. The element is selected, and the .before() method is used to insert a new paragraph before the list.

2. Selects all elements whose class attribute contains a value of hot and uses the .prepend() method to add a plus symbol (+) before the text.

3. A new element is created and stored in a variable. Then the last element is selected, and the new element is added using the .after() method.

[image: image]

GETTING AND SETTING ATTRIBUTE VALUES

You can create attributes, or access and update their contents, using the following four methods.

You can work with any attribute on any element using the attr() and removeAttr() methods.

If you use the attr() method to update an attribute that does not exist, it will create the attribute and give it the specified value.

The value of the class attribute can hold more than one class name (each separated by a space). The addClass() and removeClass() methods are very powerful because they let you add or remove an individual class name within the value of the class attribute (and they do not affect any other class names).

.attr()

This method can get or set a specified attribute and its value. To get the value of an attribute, you specify the name of the attribute in the parentheses.

$(‘li#one’).attr(‘id’);

To update the value of an attribute, you specify both the attribute name and its new value.

$(‘li#one’).attr(‘id’,‘hot’);

.removeAttr()

This method removes a specified attribute (and its value). You just specify the name of the attribute that you want to remove from the element in the parentheses.

$(‘li#one’).removeAttr(‘id’);

.addClass()

This method adds a new value to the existing value of the class attribute. It does not overwrite existing values.

.removeClass()

This method removes a value from the class attribute, leaving any other class names within that attribute intact.

These two methods are another good example of how jQuery adds helpful functionality commonly needed by web developers.

WORKING WITH ATTRIBUTES

The statements in this example use jQuery methods to change the class and id attributes of the specified HTML elements.

When the values of these attributes change, new CSS rules are applied to the elements, changing how they look.

Using events to trigger changes to attribute values that apply new CSS rules is a popular way to make a web page interactive.

[image: image]

1. The first statement finds the third list item (it has an id attribute with a value of three) and removes hot from the class attribute on that element. This is important to note because it affects the next statement.

2. The second statement selects all elements whose class attribute has a value of hot. It adds a new class name called favorite. Because step 1 updated the third list item, this statement affects only the first two.

3. The third statement selects the element and adds an id attribute, giving it a value of group (which triggers a CSS rule that will add a margin and border to the element).

[image: image]

GETTING & SETTING CSS PROPERTIES

The .css() method lets you retrieve and set the values of CSS properties.

To get the value of a CSS property, you indicate which property you want to retrieve in parentheses. If the matched set contains more than one element, it will return the value from the first element.

To set the values of a CSS property, you specify the property name as the first argument in the parentheses, then a comma, followed by its value as the second argument. This will update every element in the matched set. You can also specify multiple properties in the same method using object literal notation.

Note: In the method used to set an individual property, the property name and its value are separated by a comma (because all parameters in a method are separated by a comma).

In the object literal notation, properties and their values are separated by a colon.

HOW TO GET A CSS PROPERTY

This will store the background color of the first list item in a variable called backgroundColor. The color will be returned as an RGB value.

var backgroundColor = $(‘li’).css(‘background-color’);

HOW TO SET A CSS PROPERTY

This will set the background color of all list items. Note how the CSS property and its value are separated using a comma instead of a colon.

$(‘li’).css(‘background-color’, ‘#272727’);

When dealing with dimensions that are specified in pixels, you can increase and decrease the values using the += and -= operators.

$(‘li’).css(‘padding-left’, ‘+=20’);

SETTING MULTIPLE PROPERTIES

You can set multiple properties using object literal notation:

	Properties and values are placed in curly braces

	A colon is used to separate property names from their values

	A comma separates each pair (but there is not one after the last pair)

This sets the background color and typeface for all list items.

$(‘li’).css({
 ‘background-color’: ‘#272727’,
 ‘font-family’: ‘Courier’
});

CHANGING CSS RULES

This example demonstrates how the .css() method can be used to select and update the CSS properties of elements.

The script checks what the background color of the first list item is when the page loads and then writes it after the list.

Next, it updates several CSS properties in all list items using the same .css() method with object literal notation.

[image: image]

1. The backgroundColor variable is created. The jQuery selection contains all elements, and the .css() method returns the value of the background-color property of the first list item.

2. The background color of the first list item is written into the page using the .append() method (which you met on p318). Here, it is used to add content after the element.

3. The selector picks all elements, and then the .css() method updates several properties at the same time:

[image: image]

	The background color is changed to brown

	A white border is added

	The color of the text is changed to black

	The typeface is changed to Georgia

	Extra padding is added on the left

Note: It is better to change the value of a class attribute (to trigger new CSS rules in the style sheet) rather than to change CSS properties from within the JavaScript file itself.

WORKING WITH EACH ELEMENT IN A SELECTION

jQuery allows you to recreate the functionality of a loop on a selection of elements, using the .each() method.

You have already seen several jQuery methods that update all of the elements in a matched set without the need for a loop.

There are, however, times when you will want to loop through each of the elements in the selection. Often this will be to:

	Get information from each element in the matched set.

	Perform a series of actions on each of the elements.

The .each() method is provided for this purpose. The parameter of the .each() method is a function. This could be an anonymous function (as shown here) or a named function.

.each()

Allows you to perform one or more statements on each of the items in the selection of elements that is returned by a selector - rather like a loop in JavaScript.

It takes one parameter: a function containing the statements you want to run on each element.

this or $(this)

As the .each() method goes through the elements in a selection, you can access the current element using the this keyword.

You also often see $(this), which uses the this keyword to create a new jQuery selection containing the current element. It allows you to use jQuery methods on the current element.

[image: image]

1. The jQuery selection contains all of the elements.

2. .each() applies the same code to each element in the selection.

3. An anonymous function is run for each of the items in the list.

Since this refers to the current node, if you want to access a property of that node, e.g., that element's id or class attributes, it is better to use plain JavaScript to access those attributes:
ids = this.id;

It is more efficient than writing ids = $(this).attr(‘id’); because this would involve the interpreter creating a new jQuery object, and then using a method to access info that is available as a property.

USING .EACH()

This example creates a jQuery object containing all of the list items from the page.

The .each() method is then used to loop through the list items and run an anonymous function for each of them.

The anonymous function takes the value from the id attribute on the element and adds it to the text in the list item.

[image: image]

1. The selector creates a jQuery object containing all elements. The .each() method calls an anonymous function for each of the list items in the matched set.

2. The this keyword refers to the current element node in the loop. It is used to access the value of the current element's id attribute, which is stored in a variable called ids.

3. $(this) is used to create a jQuery object that contains the current element in the loop.

[image: image]

Having the element in a jQuery object enables you to use jQuery methods on that element. In this case the .append() method is used to add a new element to the current list item.

The content of that element is the value of its id attribute, which was obtained in step 2.

EVENT METHODS

The .on() method is used to handle all events. Behind the scenes, jQuery handles all of the cross-browser issues you saw in the last chapter.

Using the .on() method is no different than using any other jQuery method; you:

	Use a selector to create a jQuery selection.

	Use .on() to indicate which event you want to respond to. It adds an event listener to each element in the selection.

.on() was introduced in v 1.7 of jQuery. Prior to that, jQuery used separate methods for each event, e.g., .click() and .focus(). You may come across them in older code, but you should only use the .on() method now.

[image: image]

1. The jQuery selection contains all of the elements.

2. The .on() method is used to handle events. It needs two parameters:

3. The first parameter is the event you want to respond to. Here it is the click event.

4. The second parameter is the code you want to run when that event occurs on any element in the matched set. This could be a named function or an anonymous function. Above, it is an anonymous function that adds a value of complete to the class attribute.

You will see more advanced options for this method on p330.

JQUERY EVENTS

Some of the most popular events that .on() deals with are listed below. jQuery also added some extras to make life easier, such as ready, which fires when the page is ready to be worked with. These are noted with a pink asterisk:*

	UI
	focus, blur, change

	KEYBOARD
	input, keydown, keyup, keypress

	MOUSE
	click, dblclick, mouseup, mousedown, mouseover, mousemove, mouseout, hover*

	FORM
	submit, select, change

	DOCUMENT
	ready*, load, unload*

	BROWSER
	error, resize, scroll

EVENTS

In this example, when the mouse moves over a list item, the content of its id attribute is written into the list item.

The same happens if the user clicks on a list item (because mouseover does not work on touchscreen devices).

The mouseout event also removes this extra information from the page to prevent the added content building up.

[image: image]

1. The selector finds all list items on the page. The resulting jQuery object is used more than once, so it is stored in a variable called $listItems.

2. The .on() method creates an event listener, which waits for when the user moves a mouse over a list item or clicks on it. It triggers an anonymous function.

Note how the two events are specified in the same set of quote marks, with a space between them.

[image: image]

The anonymous function:

	Gets the value of the id attribute on that element.

	Removes elements from all of the list items.

	Adds the value of the id attribute to the list item in a new element.

3. The .mouseout() method triggers the removal of any child elements to prevent build-up of added values.

THE EVENT OBJECT

Every event handling function receives an event object. It has methods and properties related to the event that occurred.

Just like the JavaScript event object, the jQuery event object has properties and methods that tell you more about the event that took place.

If you look at the function that is called when the event occurs, the event object is named in the parentheses. Like any other parameter, this name is then used within the function to refer to the event object.

The example on the right uses the letter e as shorthand for the event object. However, as noted in the previous chapter, you should be aware that this shorthand is also often used for the error object.

[image: image]

1. Give the event object a parameter name.

2. Use that name in the function to reference the event object.

3. Access the properties and methods of the object using the familiar dot notation (the member operator).

	PROPERTY
	DESCRIPTION

	type
	Type of event, (e.g., click, mouseover)

	which
	Button or key that was pressed

	data
	An object literal containing extra information passed to the function when the event fires (See right-hand page for an example)

	target
	DOM element that initiated the event

	pageX
	Mouse position from left edge of viewport

	pageY
	Mouse position from top of viewport

	timeStamp
	Number of milliseconds from Jan 1st, 1970, to when the event was triggered (this is known as Unix Time). Does not work in Firefox.

	METHOD
	DESCRIPTION

	.preventDefault()
	Prevents the default (e.g., submitting a form)

	.stopPropagation()
	Stops the event bubbling up to ancestors

EVENT OBJECT

In this example, when users click on a list item, the date that the event happened on is written next to that item, along with the type of event that triggered it.

To achieve this, two properties of the event object will be used: timeStamp states when the event occurred; type states the kind of event that triggered it.

To prevent the list from becoming cluttered with multiple date entries, whenever a list item is clicked, any elements will be removed from the list.

[image: image]

1. Any elements that already exist inside the elements are removed.

2. A new Date object is created, and its time is set to the time at which the event was clicked.

3. The time the event was clicked is then converted into a date that can be read.

[image: image]

4. The date that the list item was clicked is written into the list item (along with the type of event that was used).

Note that the timeStamp property does not display in Firefox.

ADDITIONAL PARAMETERS FOR EVENT HANDLERS

The .on() method has two optional properties that let you: Filter the initial jQuery selection to respond to a subset of the elements; Pass extra information into the event handler using object literal notation.

Here you can see two additional properties that can be used with the .on() method.

When square brackets are used inside a method, they signify that the parameter is optional.

Leaving out a parameter written in square brackets will not stop the method working.

1. This is the event(s) that you want to respond to. If you want to respond to more than one event, you can provide a space-separated list of event names, e.g., ‘focus click’ will work on both focus and click.

2. If you just want to respond to the event happening on a subset of the elements in the initial jQuery selection, you can provide a second selector that will filter its descendants.

3. You can pass extra information to the function that is called when the event is triggered. This information is passed along with the event object (e).

[image: image]

4. This is the function that should be run when the specified events occur on one of the elements in the matched set.

5. The function is automatically passed the event object as a parameter, as you saw on the previous two pages. (Remember, if you use it you must give it a name in the parentheses.)

Older jQuery scripts may use the .delegate() method for delegation. However, since jQuery 1.7 .on() is the preferred approach to delegation.

DELEGATING EVENTS

In this example, the event handler will run when users click or mouseover items in the list, except for the last list item.

It writes out the content of the element the user interacted with, a status message (using the data property), and the event type.

The information passed in the data property here uses object literal notation (so it could handle multiple properties).

[image: image]

[image: image]

There is an extra element in the HTML for this example to hold the data that appears under the list.

1. The event handler is triggered by click and mouseover events.

2. The selector parameter filters out the element whose id attribute has a value of four.

3. Additional data that will be used by the event handler is passed in as an object literal.

4. The event handler uses the event object to display the content of the element the user interacts with, the information from the data that was passed into the function, and the event type, under the list in a white box.

EFFECTS

When you start using jQuery, the effects methods can enhance your web page with transitions and movement.

Here you can see some of the jQuery effects that show or hide elements and their content. You can animate them fading in and out, or slide them up and down.

When an element that was previously hidden is shown, faded in, or slides into view, the other elements on the page may move to make space for it.

When an element is hidden, has been faded out, or has slid out of view, the other elements on the page can move into the space these elements took up.

Methods with toggle in their name will look at the current state of the element (whether it is visible or hidden) and will switch to the opposite state.

Increasingly it is possible to create animations using CSS3. They are often faster than their jQuery counterparts, but they only work in recent browsers.

BASIC EFFECTS

	METHOD
	DESCRIPTION

	.show()
	Displays selected elements

	.hide()
	Hides selected elements

	.toggle()
	Toggles between showing and hiding selected elements

FADING EFFECTS

	METHOD
	DESCRIPTION

	.fadeIn()
	Fades in selected elements making them opaque

	.fadeOut()
	Fades out selected elements making them transparent

	.fadeTo()
	Changes opacity of selected elements

	.fadeToggle()
	Hides or shows selected elements by changing their opacity (the opposite of their current state)

SLIDING EFFECTS

	METHOD
	DESCRIPTION

	.slideUp()
	Shows selected elements with a sliding motion

	.slideDown()
	Hides selected elements with a sliding motion

	.slideToggle()
	Hides or shows selected elements with a sliding motion (in the opposite direction to its current state)

CUSTOM EFFECTS

	METHOD
	DESCRIPTION

	.delay()
	Delays execution of subsequent items in queue

	.stop()
	Stops an animation if it is currently running

	.animate()
	Creates custom animations (see p334)

BASIC EFFECTS

In this example, it appears as if list items are faded into view when the page loads. Each item is faded out when it is clicked on.

In fact, the items are loaded normally along with the rest of the page, but then immediately hidden using JavaScript.

Once hidden, only then are they faded into view. This is so they will still be visible in browsers that do not have JavaScript enabled.

[image: image]

1. In the first statement, the selector picks the <h2> element and hides it so that it can be animated in. The chosen effect to show the heading is the .slideDown() method. Note how the methods are chained; there is no need to make a new selection for each of the tasks.

2. The second part causes the list of items to appear one by one. Again, before they can be faded in, they must be hidden. Then the .each() method is used to loop through each of the elements in turn. You can see that this triggers an anonymous function.

Inside the anonymous function, the index property acts as a counter indicating which element is the current one.

The .delay() method creates a pause before the list item is shown. The delay is set, multiplying the index number by 700 ms (otherwise all of the list items would appear at the same time). Then it is faded in using the fadeIn() method.

[image: image]

3. The final part creates an event listener that waits for the user to click on a list item. When they do, it will fade that item out to remove it from the list (the fade will take 700 milliseconds).

ANIMATING CSS PROPERTIES

The .animate() method allows you to create some of your own effects and animations by changing CSS properties.

You can animate any CSS property whose value can be represented as a number, e.g., height, width, and font-size. But not those whose value would be a string, such as font-family or text-transform.

The CSS properties are written using camelCase notation, so the first word is all lowercase and each subsequent word starts with an uppercase character, e.g.: border-top-left-radius would become borderTopLeftRadius.

The CSS properties are specified using object literal notation (as you can see on the right-hand page). The method can also take three optional parameters, shown below.

[image: image]

1. speed indicates the duration of the animation in milliseconds. (It can also take the keywords slow and fast.)

2. easing can have two values: linear (the speed of animation is uniform); or swing (speeds up in the middle of the transition, and is slower at start and end).

3. complete is used to call a function that should run when the animation has finished. This is known as a callback function.

EXAMPLES OF JQUERY EQUIVALENTS OF CSS PROPERTY NAMES

[image: image]

USING ANIMATION

In this example, the .animate() method is used to gradually change the values of two CSS properties. Both of them have numerical values: opacity and padding-left.

When the user clicks on a list item, it fades out and the text content slides to the right. (This takes 500ms.) Once that is complete, a callback function removes the element.

You can increase or decrease numeric values by a specific amount. Here, +=80 is used to increase the padding property by 80 pixels. (To decrease it by 80 pixels, you would use -=80.)

[image: image]

1. All list items are selected and, when a user clicks on one of them, an anonymous function runs. Inside it, $(this) creates a new jQuery object holding the element the user clicked on. The .animate() method is then called on that jQuery object.

2. Inside the .animate() method, the opacity and paddingLeft are changed. The value of the paddingLeft property is increased by 80 pixels, which makes it look like the text is sliding to the right as it fades out.

3. The .animate() method has two more parameters. The first is the speed of the animation in milliseconds (in this case, 500ms). The second is another anonymous function indicating what should happen when the animation finishes.

[image: image]

4. When the animation has finished, the callback function removes that list item from the page using the .remove() method.

If you want to animate between two colors, rather than using the .animate() method, there is a helpful jQuery color plugin here:

https://github.com/jquery/jquery-color

TRAVERSING THE DOM

When you have made a jQuery selection, you can use these methods to access other element nodes relative to the initial selection.

Each method finds elements that have a different relationship to those that are in the current selection (e.g., parents or children of the current selection).

The .find() and .closest() methods both require a CSS-style selector as an argument.

For the other methods, the CSS-style selector is optional. But if a selector is provided, both the method and selector must match in order for the element to be added to the new selection.

For example, if you start with a selection that contains one list item, you could create a new selection containing the other items from the list using the .siblings() method.

If you added a selector into the method such as this: .siblings(‘.important’) then it would find only siblings with a class attribute whose value included important.

SELECTOR REQUIRED

	METHOD
	DESCRIPTION

	.find()
	All elements within current selection that match selector

	.closest()
	Nearest ancestor (not just parent) that matches selector

SELECTOR OPTIONAL

	METHOD
	DESCRIPTION

	.parent()
	Direct parent of current selection

	.parents()
	All parents of current selection

	.children()
	All children of current selection

	.siblings()
	All siblings of current selection

	.next()
	Next sibling of current element

	.nextAll()
	All subsequent siblings of current element

	.prev()
	Previous sibling of current element

	.prevAll()
	All previous siblings of current element

If the original selection contains multiple elements, these methods will work on all of the elements in the selection (which can result in quite an odd selection of elements). You may need to narrow down your initial selection before traversing the DOM.

Behind the scenes, jQuery will handle the cross-browser inconsistencies involved in traversing the DOM (such as whitespace nodes being added by some browsers).

TRAVERSING

When the page loads, the list is hidden, and a link is added to the heading that indicates the users can display the list if they wish.

The link is added inside the heading and, if the user clicks anywhere on the <h2> element, the element is faded in.

Any child elements that have a class attribute whose value is hot are also given an extra value of complete.

[image: image]

1. A click event anywhere in the <h2> element will trigger an anonymous function.

2. The .next() method is used to select the next sibling after the <h2> element, which is the element.

3. The is faded into view.

4. The .children() method then selects any child elements of the element, and the selector indicates that it should pick only those whose class attribute has a value of hot.

5. The .addClass() method is then used on those elements to add a class name of complete. This shows how you can chain methods and traverse from one node to another.

6. In the last step, the .find() method can be used to select the <a> element that is a child of the <h2> element and fade it out because the list is now being shown to the users.

[image: image]

ADD & FILTER ELEMENTS IN A SELECTION

Once you have a jQuery selection, you can add more elements to it, or you can filter the selection to work with a subset of the elements.

The .add() method allows you to add a new selection to an existing one.

The second table on the right shows you how to find a subset of your original selection.

The methods take another selector as a parameter and return a filtered matched set.

The items in this table that begin with a colon can be used wherever you would use a CSS-style selector.

The :not() and :has() selectors take another CSS-style selector as a parameter. There is also a selector called :contains() that lets you find elements that contain specific text.

The .is() method lets you use another selector to check whether the current selection matches a condition. If it does, it will return true. This is helpful in conditional statements.

ADDING ELEMENTS TO A SELECTION

	METHOD
	DESCRIPTION

	.add()
	Selects all elements that contain the text specified (parameter is case sensitive)

FILTERING WITH A SECOND SELECTOR

	METHOD/SELECTOR
	DESCRIPTION

	.filter()
	Finds elements in matched that in turn match a second selector

	.find()
	Finds descendants of elements in matched set that match the selector

	.not()/:not()
	Finds elements that do not match the selector

	.has()/:has()
	Finds elements from the matched set that have a descendant that matches the selector

	:contains()
	Selects all elements that contain the text specified (parameter is case sensitive)

The following two selectors are equivalent:
$(‘li’).not(‘.hot’).addClass(‘cool’);
$(‘li:not(.hot)’).addClass(‘cool’);
In browsers that support querySelector() / querySelectorAll(), :not() is faster than .not() and :has() is faster than .has()

TESTING CONTENT

	METHOD
	DESCRIPTION

	.is()
	Checks whether current selection matches a condition (returns Boolean)

FILTERS IN USE

This example selects all list items and then uses different filters to select a subset of the items from the list to work with.

The example uses both the filtering methods as well as the CSS-style pseudo-selector :not().

Once the filters have selected a subset of the list items, other jQuery methods are used to update them.

[image: image]

1. The .filter() method finds the last list item with a class attribute whose value is hot. It then removes that value from the class attribute.

2. The :not() selector is used within the jQuery selector to find elements without a value of hot in their class attribute and adds a value of cool.

3. The .has() method finds the element that has an element within it and adds the value complete to the class attribute.

[image: image]

4. The .each() method loops through the list items. The current element is cached in a jQuery object. The .is() method looks to see if the element has a class attribute whose value is hot. If it does, ‘Priority item: ’ is added to the start of the item.

5. The :contains selector checks for elements that contain the text “honey” and appends the text “(local)” to the end of those items.

FINDING ITEMS BY ORDER

Each item returned by a jQuery selector is given an index number, which can be used to filter the selection.

The jQuery object is sometimes referred to as being an array-like object because it assigns a number to each of the elements that is returned by a selector. That number is an index number, which means it starts at 0.

You can filter the selected elements based on this number using methods or these additional CSS-style selectors that jQuery has added.

Methods are applied to the jQuery selection, whereas selectors are used as part of the CSS-style selector.

On the right, you can see a selector which picks all of the elements from the list example used throughout this chapter. The table shows each list item and its corresponding index number. The example on the next page will use these numbers to select list items and update their class attributes.

FINDING ELEMENTS BY INDEX NUMBER

	METHOD / SELECTOR
	DESCRIPTION

	.eq()
	The element that matches the index number

	:lt()
	Elements with an index less than the number specified

	:gt()
	Elements with an index greater than the number specified

$(‘li’)

	INDEX
	HTML

	 0
	<li id=”one” class=”hot”>fresh figs

	 1
	<li id=”two” class=”hot”>pine nuts

	 2
	<li id=”three” class=”hot”>honey

	 3
	<li id=”four”>balsamic vinegar

USING INDEX NUMBERS

This example demonstrates how jQuery gives an index number to each of the elements in the jQuery selection.

The :lt() and :gt() selectors and the .eq() method are used to find elements based on their index numbers.

For each of the matching elements, the value of the class attributes are changed.

[image: image]

1. The :lt() selector is used in the selector to pick list items with an index number less than 2. It removes the value hot from their class attribute.

2. The .eq() method selects the first item (using the number 0 because the index numbers start at zero). It adds the value of complete to the class attribute.

3. The :gt() selector is used in the jQuery selector to pick the list items with an index number higher than 2. It adds a value of cool to their class attribute.

[image: image]

SELECTING FORM ELEMENTS

jQuery has selectors that are designed specifically to work with forms, however, they are not always the quickest way to select elements.

If you use one of these selectors on its own, jQuery will examine each element in the document to find a match (using code in the jQuery file, which is not as quick as CSS selectors).

Therefore, you should narrow down the part of the document the script needs to look through by placing an element name or other jQuery selector before using the selectors shown on this page.

You can also access elements in a form using the same selectors used to pick any element in jQuery. This will often be the faster option.

It is also worth noting that, because jQuery handles inconsistencies in the way browsers treat whitespace, it is easier to traverse between form elements using jQuery than it is when you are using plain JavaScript.

SELECTORS FOR FORM ELEMENTS

	SELECTOR
	DESCRIPTION

	:button
	<button> and <input> elements whose type attribute has a value of button

	:checkbox
	<input> elements whose type attribute has a value of checkbox. Note that you get better performance with $(‘[type=”checkbox”]’)

	:checked
	Checked elements from checkboxes and radio buttons (see :selected for select boxes)

	:disabled
	All elements that have been disabled

	:enabled
	All elements that are enabled

	:focus
	Element that currently has focus. Note that you get better performance with $(document.activeElement)

	:file
	All elements that are file inputs

	:image
	All image inputs. Note that you get better performance using [type=”image”]

	:input
	All <button>, <input>, <select>, and <textarea> elements. Note that you get better performance from selecting elements, then using .filter(”:input”)

	:password
	All password inputs. Note that you get better performance using $(‘input:password’)

	:radio
	All radio inputs. To select a group of radio buttons, you can use $(‘input[name=”gender”]:radio’)

	:reset
	All inputs that are reset buttons

	:selected
	All elements that are selected. Note that you get better performance using a CSS selector inside the .filter() method, e.g., .filter(”:selected”)

	:submit
	<button> and <input> elements whose type attribute has a value of submit. Note that you will get better performance using [type=”submit”]

	:text
	Selects <input> elements with a type attribute whose value is text, or whose type attribute is not present. You will likely get better performance from (‘input:text’)

FORM METHODS & EVENTS

RETRIEVE THE VALUE OF ELEMENTS

	METHOD
	DESCRIPTION

	.val()
	Primarily used with <input>, <select>, and <textarea> elements. It can be used to get the value of the first element in a matched set, or update the value of all of them.

OTHER METHODS

	METHOD
	DESCRIPTION

	.filter()
	Used to filter a jQuery selection using a second selector (especially form-specific filters)

	.is()
	Often used with filters to check whether a form input is selected/checked

	$.isNumeric()
	Checks whether the value represents a numeric value and returns a Boolean. It returns true for the following:

	$.isNumeric(1)
	$.isNumeric(-3)

	$.isNumeric(”2”)
	$.isNumeric(4.4)

	$.isNumeric(+2)
	$.isNumeric(0xFF)

EVENTS

	METHOD
	DESCRIPTION

	.on()
	Used to handle all events

	EVENT
	DESCRIPTION

	blur
	When an element loses focus

	change
	When the value of an input changes

	focus
	When an element gains focus

	select
	When the option for a <select> element is changed

	submit
	When a form is submitted

When submitting a form, there is also a helpful method called .serialize() which you will learn about on p394-p395.

The .val() method gets the value of the first <input>, <select>, or <textarea> element in a jQuery selection. It can also be used to set the value for all matching elements.

The .filter() and .is() methods are commonly used with form elements. You met them on p338.

$.isNumeric() is a global method. It is not used on a jQuery selection; rather, the value you want to test is passed as an argument.

All of the event methods on the left correspond to JavaScript events that you might use to trigger functions. As with other jQuery code, they handle the inconsistencies between browsers behind the scenes.

jQuery also makes it easier to work with a group of elements (such as radio buttons, checkboxes, and the options in a select box), because, once you have selected the elements, you can simply apply individual methods to each of them without having to write a loop.

There is an example using forms on the next page, and there are more examples in Chapter 13.

WORKING WITH FORMS

In this example, a button and form have been added under the list. When the user clicks on the button to add a new item, the form will come into view.

The form lets users add a new item to the list with a single text input and a submit button. (The new item button is hidden when the form is in view.)

When the user presses the submit button, the new item is added to the bottom of the list. (The form is also hidden and the new item button is shown again.)

[image: image]

[image: image]

1. New jQuery objects are created to hold the new item button, the form to add new items, and the add button. These are cached in variables.

2. When the page loads, the CSS hides the new item button (and shows the form), so jQuery methods show the new item button and hide the form.

3. If a user clicks on the new item button (the <button> element whose id attribute has a value of showForm), the new item button is hidden and the form is shown.

[image: image]

4. When the form is submitted, an anonymous function is called. It is passed the event object.

5. The .preventDefault() method can stop the form being submitted.

6. The :text selector picks the <input> element whose type attribute has a value of text, and the .val() method gets the value the user entered into it. This value is stored in a variable called newText.

7. A new item is added to the end of the list using the .after() method.

8. The form is hidden, the new item button is shown again, and the content of the text input is emptied (so the user can add a new entry if they want to).

CUTTING & COPYING ELEMENTS

Once you have a jQuery selection, you can use these methods to remove those elements or make a copy of them.

The .remove() method deletes the matched elements and all of their descendants from the DOM tree.

The .detach() method also removes the matched elements and all of their descendants from the DOM tree; however, it retains any event handlers (and any other associated jQuery data) so they can be inserted back into the page.

The .empty() and .unwrap() methods remove elements in relation to the current selection.

The .clone() method creates a copy of the matched set of elements (and any descendants). If you use this method on HTML that contains id attributes, the value of the id attributes would need updating otherwise they would no longer be unique. If you want to pass any event handlers, you should add true between the parentheses.

CUT

	METHOD
	DESCRIPTION

	.remove()
	Removes matched elements from DOM tree (including any descendants and text nodes)

	.detach()
	Same as .remove() but keeps a copy of them in memory

	.empty()
	Removes child nodes and descendants from any elements in matched set

	.unwrap()
	Removes parents of matched set, leaving matched elements

COPY

	METHOD
	DESCRIPTION

	.clone()
	Creates a copy of the matched set (including any descendants and text nodes)

PASTE

You saw how to add elements into the DOM tree on p318.

CUT, COPY, PASTE

In this example, you can see parts of the DOM tree being removed, duplicated, and placed elsewhere on the page.

The HTML has an extra <p> element after the list, which contains a quote. It is moved to a new position under the heading.

In addition, the first list item is detached from the list and moved to the end of it.

[image: image]

[image: image]

1. A jQuery selection is made containing the <p> element at the end of the page, and this is cached in a variable called $p.

2. That element is copied using the .clone() method (along with its content and child elements). It is stored in a variable called $clonedQuote.

3. The paragraph is removed.

4. The cloned version of the quote is inserted after the <h2> element at the top of the page.

5. The first list item is detached from the DOM tree and stored in a variable called $moveItem (effectively removing it from the DOM tree).

6. That list item is then appended to the end of the list.

BOX DIMENSIONS

These methods allow you to discover or update the width and height of all boxes on the page.

CSS treats each element on a web page as if it were in its own box. A box can have padding, a border, and a margin. If you set the width or height of the box in CSS, it does not include any padding, border, or margin - they are added to the dimensions.

The methods shown here allow you to retrieve the width and height of the first element in the matched set. The first two also allow you to update the dimensions of all boxes in the matched set.

The remaining methods give different measurements depending on whether you want to include padding, border, and a margin. Note how the .outerHeight() and .outerWidth() methods take a parameter of true if you want the margin included.

When retrieving dimensions, these methods return a number in pixels.

RETRIEVE OR SET BOX DIMENSIONS

	METHOD
	DESCRIPTION

	.height()
	Height of box (no margin, border, padding)

	.width()
	Width of box (no margin, border, padding) (1)

RETRIEVE BOX DIMENSIONS ONLY

	METHOD
	DESCRIPTION

	.innerHeight()
	Height of box plus padding

	.innerWidth()
	Width of box plus padding (2)

	.outerHeight()
	Height of box plus padding and border

	.outerWidth()
	Width of box plus padding and border (3)

	.outerHeight(true)
	Height of box plus padding, border, and margin

	.outerWidth(true)
	Width of box plus padding, border, and margin (4)

[image: image]

CHANGING DIMENSIONS

This example demonstrates how the .height() and .width() methods can be used to retrieve and update box dimensions.

The page displays the height of the container. It then changes the width of the list items using percentages and pixels.

[image: image]

1. A variable called listHeight is created to store the height of the page container. It is obtained using the .height() method.

2. The height of the page is written at the end of the list using the .append() method and may vary between browsers.

3. The selector picks all the elements and sets their width to 50% of their current width using the .width() method.

[image: image]

4. These two statements set the width of the first list item to 125 pixels and the width of the second list item to be 75% of the width it was when the page loaded.

Measurements in percentages or ems should be given as a string, with the suffix % or em. Pixels do not require a suffix and are not enclosed in quotes.

WINDOW & PAGE DIMENSIONS

The .height() and .width() methods can be used to determine the dimensions of both the browser window and the HTML document. There are also methods to get and set the position of the scroll bars.

On p348, you saw that you can get and set the height or width of a box using the .height() and .width() methods.

These can also be used on a jQuery selection containing the window or document objects.

The browser can display scroll bars if the height or width of:

	A box's content is larger than its allocated space.

	The current page represented by the document object is larger than the dimensions of the browser window's viewable area (viewport).

The .scrollLeft() and .scrollTop() methods allow you to get and set the position of the scroll bars.

When retrieving dimensions, these methods return a number in pixels.

	METHOD
	DESCRIPTION

	.height()
	Height of the jQuery selection

	.width()
	Width of the jQuery selection

	.scrollLeft()
	Gets the horizontal position of the scroll bar for the first element in the jQuery selection, or sets the horizontal scroll bar position for matched nodes

	.scrollTop()
	Gets the vertical position of the scroll bar for the first element in the jQuery selection, or sets the vertical scroll bar position for matched nodes

[image: image]

This method will often return the incorrect value unless a DOCTYPE declaration is specified for the HTML page.

POSITION OF ELEMENTS ON THE PAGE

The .offset() and .position() methods can be used to determine the position of elements on the page.

	METHOD
	DESCRIPTION

	.offset()
	Gets or sets coordinates of the element relative to the top left-hand corner of the document object (1)

	.position()
	Gets or sets coordinates of the element relative to any ancestor that has been taken out of normal flow (using CSS box offsets). If no ancestor is out of normal flow, it will return the same as .offset() (2)

[image: image]

To get the offset or position, store the object that is returned by these methods in a variable. Then use the left or right properties of the object to retrieve their position.

var offset = $(‘div’).offset();
var text = ‘Left: ’ + offset.left + ‘ Right: ’ + offset.right;

The two methods on the left help you to determine the position of an element:

	Within the page.

	In relation to an ancestor that is offset from normal flow.

Each of them returns an object that has two properties:

top - the position from the top of the document or containing element.

left - the position from the left of the document or containing element.

As with other jQuery methods, when used to retrieve information, they return the co-ordinates of the first element in the matched set.

If they are used to set the position of elements, they will update the position of all elements in the matched set (putting them in the same spot).

DETERMINING POSITION OF ITEMS ON THE PAGE

[image: image]

[image: image]

In this example, as the user scrolls down the page, a box slides into view if they get within 500 pixels of the footer.

We will call this part of the page the end zone, and you need to work out the height at which the endZone starts.

Every time the user scrolls, you then check the position of the scroll bar from the top of the page.

If the scroll bar is further down the page than the start of the end zone, the box is animated into the page. If not, then the box is hidden.

The HTML for this example contains an extra <div> element at the end of the page containing the advert. A lot of items have been added to the list to create a long page that scrolls.

1. Cache the window and advert.

2. The height of the end zone is calculated, and stored in a variable called endZone.

3. The scroll event triggers an anonymous function every time the user scrolls up or down.

4. A conditional statement checks if the user's position is further from the top of the page than the start of the end zone.

5. If the condition returns true, the box slides in from the right-hand edge of the page. This takes 250 milliseconds.

6. If the condition is false or the box is in the middle of animating, it is stopped using the .stop() method. The advert then slides off the right-hand edge of the page. Again, this animation will take 250 milliseconds.

[image: image]

CALCULATING THE END ZONE

Calculate the height at which the box should come into view by:

a) Getting the height from the top of the page to the top of the footer (the gray bar) in pixels.

b) Subtracting the height of the viewport from this result.

c) Subtracting a further 500px for the area where the box will come into view (shown in pink).

You can tell how far the user has scrolled down the page using:

$(window).scrollTop();

If the distance extends down further than the height at which the end zone should show, the box should be made visible.

If not, then the box should move off the page.

[image: image]

WAYS TO INCLUDE JQUERY IN YOUR PAGE

In addition to hosting the jQuery file with the rest of your website, you can also use a version that is hosted by other companies. However, you should still include a fallback version.

At the time of writing, the main CDNs to offer jQuery are jQuery CDN (powered by Max CDN), Google, and Microsoft.

[image: image]

A Content Delivery Network (or CDN) is a series of servers spread out around the world. They are designed to serve static files (such as HTML, CSS, JavaScript, images, audio, and video files) very quickly.

The CDN tries to find a server near you, then sends files from that server so the data does not travel as far. With jQuery, users might have already downloaded and cached the file from a CDN when visiting another site.

When including jQuery in your pages, you can try to load it from one of these CDNs. Then you check if it loaded, and if not, you can include a version that is stored on your own servers (this is known as a fallback).

LOADING JQUERY FROM A CDN

When a page loads jQuery from a CDN, you will often see a syntax like the one shown below. It starts with a <script> tag that tries to load the jQuery file from the CDN. But note that the URL for the script starts with two forward slashes (not http:).

This is known as a protocol relative URL. If the user is looking at the current page through https, then they will not see an error that tells them there are unsecure items on the page. Note: This does not work locally with the file:// protocol.

This is often followed by a second <script> tag that contains a logical operator, which checks to see if jQuery has loaded. If it has not loaded, the browser tries to load the jQuery script from the same server as the rest of the website.

[image: image]

The logical operator looks for the jQuery object that the jQuery script makes available. If it exists, then a truthy value is returned and the logical operator short circuits (see p157).

If jQuery has not loaded, then the document.write() method is used to add a new <script> tag into the page. This will load a version of jQuery from the same server as the rest of the website.

The fallback option is important because the CDN may be unavailable, the file may have moved, and some countries ban some domain names (such as Google).

WHERE TO PLACE YOUR SCRIPTS

The position of <script> elements can affect how quickly a web page seems to load.

SPEED

In the early days of the web, developers were told to place the <script> tags in the <head> of the page as you do with style sheets. However, this can make pages seem slower to load.

Your web page may use files from several different locations (e.g., images or CSS files might be loaded from one CDN, jQuery could be loaded from the jQuery or Google CDNs, and fonts might be loaded from another third party).

Usually a browser will collect up to two files at a time from each different server. However, when a browser starts to download a JavaScript file, it stops all other downloads and pauses laying out the page until the script has finished loading and been processed.

Therefore, if you place the script at the end of the page before the closing </body> tag, it will not affect the rendering of the rest of the page.

HTML LOADED INTO THE DOM TREE

Whenever a script is accessing the HTML within a web page, it also needs to have loaded that HTML into the DOM tree before the script can work. (This is often referred to as the DOM having loaded.)

You can use the load event to trigger a function so that you know the HTML has loaded. However, it fires only when the page and all of its resources load. You can also use the HTML5 DOMContentLoaded event, but it does not work in older browsers.

[image: image]

If the script tries to access an element before it has loaded, it causes an error. In the diagram above, the script could access the first two elements, but not the third or fourth.

Where possible, do consider using alternatives to scripts. For example, use CSS for animations or HTML5's autofocus attribute rather than using the load event to bring focus to an element.

If your page is slow to load and you only want to include a small amount of code before the rest of the page has loaded, you can place a <script> tag within the body of the page.

At the time of writing, this technique was commonly used by Google for speed advantages, but it is acknowledged that it makes code much harder to maintain.

[image: image]

IN THE HEAD

This location is best avoided as:

1. Pages seem slower to load.

2. DOM content is not loaded, when the script is executed so you have to wait for an event like load or DOMContentLoaded to trigger your functions.

If you must use a <script> element within the head of the page, it should be just before the closing </head> tag.

[image: image]

IN THE PAGE

As with scripts in the <head>, those in the middle of the page will slow the rest of the page down when it is loading.

If you use document.write(), the <script> element has to be placed where you want that content to appear. This is one of several good reasons to avoid using document.write().

[image: image]

BEFORE THE CLOSING </body> TAG

This is an ideal location as:

1. The script is not blocking other things from downloading.

2. The DOM has already loaded by the time the script is executed.

JQUERY DOCUMENTATION

For an exhaustive list of the functionality provided in jQuery, visit http://api.jquery.com

It is not possible to teach you everything about jQuery in one (albeit long) chapter. But you have seen many of the most popular features, and you should now know enough about jQuery to understand how it works and how to make use of it in your scripts.

Throughout the remaining chapters of this book, you will see many more examples that use jQuery.

What you have learned should also give you enough experience to work with the comprehensive jQuery documentation available online at: http://api.jquery.com

This site lists each method and property available to you, along with new functionality added in the latest versions, and notes that indicate which features are scheduled to be dropped.

HOW THE DOCUMENTATION WORKS

[image: image]

On the left-hand side of the page, you will see the different types of functionality that you can explore.

When you click on any of the methods in the main column, you will see a list of the parameters that it can take. When parameters are optional, they are shown in square brackets.

You will also find deprecated methods. This means that you are no longer advised to use this markup because it is likely to be removed from future versions of jQuery (if it has not already been removed).

EXTENDING JQUERY WITH PLUGINS

Plugins are scripts that extend the functionality of the jQuery library. Hundreds have been written and are available for you to use.

Plugins offer functionality that is not included in the jQuery library. They usually deal with a particular task such as creating slideshows or video players, performing animations, transforming data, enhancing forms, and displaying new data from a remote server.

To get an idea of the number and range of plugins available, see http://plugins.jquery.com. All of these are free for you to download and use on your own sites. You may also find other sites listing jQuery plugins for sale (such as codecanyon.net).

Plugins are written so that new methods extend the jQuery object and can, therefore, be used on a jQuery selection. As long as you know how to do the following with jQuery:

	Make a selection of elements

	Call a method and use parameters

You can use a lot of the functionality of these plugins without having to write the code yourself. In Chapter 11, you will see an example of how to create a basic jQuery plugin.

HOW TO CHOOSE A PLUGIN

[image: image]

When you are choosing a plugin to work with, it can be worth checking that it is still being maintained or whether other people have experienced problems using it. Finding out the following can help:

	When was the plugin last updated?

	How many people are watching the plugin?

	What do the bug reports say?

If you ask a question or find a bug in a script, bear in mind that their authors may have a day job and only maintain these plugins in their spare time to help others and to give back to the community.

JAVASCRIPT LIBRARIES

jQuery is an example of what programmers call a JavaScript library. It is a JavaScript file that you include in your page, which then lets you use the functions, objects, methods, and properties it contains.

The concept of a library is that it allows you to borrow code from one file and use its functions, objects, methods, and properties in another script.

Once you have included the script in your page, its functionality is available to use. The documentation for the library will tell you how to use it.

DOM & EVENTS

Zepto.js
YUI
Dojo.js
MooTools.js

TEMPLATING

Mustache.js
Handlebars.js
jQuery Mobile

jQuery is the most widely used library on the web, but when you have learned it, you might like to explore some of the other libraries listed below.

Popular libraries have the advantage that they will be well-tested, and some have a whole team of developers who work on them in their spare time.

USER INTERFACE

jQuery UI
jQuery Mobile
Twitter Bootstrap
YUI

WEB APPLICATIONS

Angular.js
Backbone.js
Ember.js

One of the main drawbacks with a library is that they will usually contain functionality that you will not need to use. This means users have to download code that will not be needed (which can slow your site down). You may find that you can strip out the subset of the library you need or indeed write your own script to do that job.

GRAPHICS & CHARTS

Chart.js
D3.js
Processing.js
Raphael.js

COMPATIBILITY

Modernizr.js
YepNope.js
Require.js

PREVENTING CONFLICTS WITH OTHER LIBRARIES

Earlier in the chapter, you saw that $() was shorthand for jQuery(). The $ symbol is used by other libraries such as prototype.js, MooTools, and YUI. To avoid conflicts with those scripts, use these techniques.

INCLUDING JQUERY AFTER OTHER LIBRARIES

Here, jQuery's meaning of $ takes precedence:

<script src=”other.js”></script>
<script src=”jquery.js”></script>

You can use the .noConflict() method at the start of your script, to tell jQuery to release the $ shortcut so that other scripts can use it. Then you can use the full name rather than the shortcut:

jQuery.noConflict();
jQuery(function() {
 jQuery(‘div’).hide();
});

You can wrap your script in an IIFE and still use $:

jQuery.noConflict();
(function($) {
 $(‘div’).hide();
})(jQuery);

Or you can specify your own alias instead, e.g., $j:

var $j = jQuery.noConflict();
$j(document).ready(function() {
 $j(‘div’).hide();
});

INCLUDING JQUERY BEFORE OTHER LIBRARIES

Here, the other scripts' use of $ takes precedence:

<script src=”jquery.js”></script>
<script src=”other.js”></script>

$ will have the meaning defined in the other library. There is no need to use the .noConflict() method because it will have no effect. But you can continue to use the full name jQuery:

jQuery(document).ready(function() {
 jQuery(‘div’).hide();
});

You can pass $ as an argument to the anonymous function called by the .ready() method like so:

jQuery(document).ready(function($) {
 $(‘div’).hide();
});

This is equivalent to the code shown above:

jQuery(function($){
 $(‘div’).hide();
});

[image: image]

EXAMPLE
JQUERY

This example brings together a number of the techniques you have seen in this chapter to create a list that users can add items to and remove items from.

	Users can add new list items.

	They can also click to indicate that an item is complete (at which point it is moved to the bottom of the list and marked as complete).

	Once an item is marked as complete, a second click on the item will remove it from the list.

An updated count of the number of items there are in the list will be shown in the heading.

As you will see, the code using jQuery is more compact than it would be if you were writing this example in plain JavaScript, and it will work across browsers even though there is no explicit fallback code.

Because new items can be added to the list, the events are handled using event delegation. When the user clicks anywhere on the element, the .on() event method handles the event. Inside the event handler, there is a conditional statement to check whether the list item is:

	Not complete - in which case, the click is used to change the item to complete, move it to the bottom of the list, and update the counter.

	Complete - in which case, the second click on the item fades it out and removes it from the list altogether.

The use of conditional statements and custom functions (used for the counter) illustrate how jQuery techniques are used in combination with traditional JavaScript that you have been learning throughout the book.

The appearance and removal of the elements is also animated, and these animations demonstrate how methods can be chained together to create complex interactions based on the same selection of elements.

[image: image]

The entire script will wait until the DOM is ready before running, because it is inside the shorthand for the document.ready() method. Variables are created that will be used in the script, including jQuery selections that need to be cached.

The updateCounter() function checks how many items are in the list and writes it into the heading. It is called straight away to calculate how many list items are on the page when it loads, and then write that number next to the heading.

The form to add new items is hidden when the page loads, and is shown when the user clicks on the add button. When the user clicks on the add button a new item is added to the form and the updateCounter() is called.

[image: image]

The .on() event method listens for the user clicking anywhere on the list because this script uses event delegation. When they do, the element that was clicked on is stored in a jQuery object and cached in a variable called $this.

Next, the code checks if that element has a class name of complete. If it does, then the list item is animated out of view and removed. If it was not already complete, then it is moved to the end of the list.

When it is added to the end of the list, its class attribute is given a value of complete.

Finally, updateCount() is called to update the number of items left to do on the list.

SUMMARY

JQUERY

	jQuery is a JavaScript file you include in your pages.

	Once included, it makes it faster and easier to write cross-browser JavaScript, based on two steps:
1. Using CSS-style selectors to collect one or more nodes from the DOM tree.

2. Using jQuery's built-in methods to work with the elements in that selection.

	jQuery's CSS-style selector syntax makes it easier to select elements to work with. It also has methods that make it easier to traverse the DOM.

	jQuery makes it easier to handle events because the event methods work across all browsers.

	jQuery offers methods that make it quick and simple to achieve a range of tasks that JavaScript programmers commonly need to perform.

 8

AJAX & JSON

Ajax is a technique for loading data into part of a page without having to refresh the entire page. The data is often sent in a format called JavaScript Object Notation (or JSON).

The ability to load new content into part of a page improves the user experience because the user does not have to wait for an entire page to load if only part of it is being updated. This has led to a rise in so-called single page web applications (web-based tools that feel more like software applications, even though they run in the browser). This chapter covers:

WHAT AJAX IS

Ajax allows you to request data from a server and load it without having to refresh the entire page.

DATA FORMATS

Servers typically send back HTML, XML, or JSON, so you will learn about these formats.

JQUERY & AJAX

jQuery makes it easier to create Ajax requests and process the data the server returns.

[image: image]

WHAT IS AJAX?

You may have seen Ajax used on many websites, even if you were not aware that it was being used.

[image: image]

Live search (or autocomplete) commonly uses Ajax. You may have seen it used on the Google website. When you type into the search bar on the home page, sometimes you will see results coming up before you have finished typing.

[image: image]

Sometimes when you are shopping online and add items to your shopping cart, it is updated without you leaving the page. At the same time, the site may display a message confirming the item was added.

[image: image]

Websites with user-generated content (such as Twitter and Flickr) may allow you to display your information (such as your latest tweets or photographs) on your own website. This involves collecting data from their servers.

[image: image]

If you are registering for a website, a script may check whether your username is available before you have completed the rest of the form.

Sites may also use Ajax to load data behind the scenes so that they can use or show that data later on.

WHY USE AJAX?

Ajax uses an asynchronous processing model. This means the user can do other things while the web browser is waiting for the data to load, speeding up the user experience.

USING AJAX WHILE PAGES ARE LOADING

When a browser comes across a <script> tag, it will typically stop processing the rest of the page until it has loaded and processed that script. This is known as a synchronous processing model.

When a page is loading, if a script needs to collect data from a server (e.g., if it collects financial exchange rates or status updates), then the browser would not just wait for the script to be loaded and processed; it would also have to wait for a server to send the data that the script is going to display.

With Ajax, the browser can request some data from a server and - once that data has been requested - continue to load the rest of the page and process the user's interactions with the page. It is known as an asynchronous (or non-blocking) processing model.

The browser does not wait for the third party data in order to show the page. When the server responds with the data, an event is fired (like the load event that fires when a page has loaded). This event can then call a function that processes the data.

USING AJAX WHEN PAGES HAVE LOADED

Once a page has loaded, if you want to update what the user sees in the browser window, typically you would refresh the entire page. This means that the user has to wait for a whole new page to download and be rendered by the browser.

With Ajax, if you only want to update a part of the page, you can just update the content of one element. This is done by intercepting an event (such as the user clicking on a link or submitting a form) and requesting the new content from the server using an asynchronous request.

While that data is loading, the user can continue to interact with the rest of the page. Then, once the server has responded, a special Ajax event will trigger another part of the script that reads the new data from the server and updates just that one part of the page.

Because you do not have to refresh the whole page, the data will load faster and the user can still use the rest of the page while they are waiting.

Historically, AJAX was an acronym for the technologies used in asynchronous requests like this. It stood for Asynchronous JavaScript And XML. Since then, technologies have moved on and the term Ajax is now used to refer to a group of technologies that offer asynchronous functionality in the browser.

HOW AJAX WORKS

When using Ajax, the browser requests information from a web server. It then processes the server's response and shows it within the page.

[image: image]

The browser requests data from the server. The request may include information that the server needs - just like a form might send data to a server.

Browsers implement an object called XMLHttpRequest to handle Ajax requests. Once a request has been made, the browser does not wait for a response from the server.

What happens on the server is not part of what is called Ajax.

Server-side technologies such as ASP.net, PHP, NodeJS, or Ruby can generate web pages for each user. When there is an Ajax request, the server might send back HTML, or it might send data in a different format such as JSON or XML (which the browser turns into HTML).

When the server has finished responding to the request, the browser will fire an event (just like it can fire an event when a page has finished loading).

This event can be used to trigger a JavaScript function that will process the data and incorporate it into one part of the page (without affecting the rest of the page).

HANDLING AJAX REQUESTS & RESPONSES

To create an Ajax request, browsers use the XMLHttpRequest object. When the server responds to the browser's request, the same XMLHttpRequest object will process the result.

THE REQUEST

[image: image]

1. An instance of the XMLHttpRequest object is created using object constructor notation (which you met on p106). It uses the new keyword and stores the object in a variable. The variable name xhr is short for XMLHttpRequest (the name of the object).

2. The XMLHttpRequest object's open() method prepares the request. It has three parameters (which you meet on p379):

i) The HTTP method

ii) The url of the page that will handle your request

iii) A Boolean indicating if it should be asynchronous

3. The send() method is the one that sends the prepared request to the server. Extra information can be passed to the server in the parentheses. If no extra information is sent, you may see the keyword null used (although it is not strictly needed): xhr.send(null).

THE RESPONSE

[image: image]

1. When the browser has received and loaded a response from the server, the onload event will fire. This will trigger a function (here, it is an anonymous function).

2. The function checks the status property of the object. This is used to make sure the server's response was okay. (If this property is blank, check the setup of the server.)

Note that IE9 was the first version of IE to support this way of dealing with Ajax responses. To support older browsers, you can use jQuery (see p388).

DATA FORMATS

The response to an Ajax request usually comes in one of three formats: HTML, XML, or JSON. Below is a comparison of these formats. XML and JSON are introduced over the next three pages.

HTML

You are probably most familiar with HTML, and, when you want to update a section of a web page, it is the simplest way to get data into a page.

BENEFITS

	It is easy to write, request, and display.

	The data sent from the server goes straight into the page. There's no need for the browser to process it (as with the other two methods).

DRAWBACKS

	The server must produce the HTML in a format that is ready for use on your page.

	It is not well-suited for use in applications other than web browsers. It does not have good data portability.

	The request must come from the same domain* (see below).

XML

XML looks similar to HTML, but the tag names are different because they describe the data that they contain. The syntax is also more strict than HTML.

BENEFITS

	It is a flexible data format and can represent complex structures.

	It works well with different platforms and applications.

	It is processed using the same DOM methods as HTML.

DRAWBACKS

	It is considered a verbose language because the tags add a lot of extra characters to the data being sent.

	The request must come from the same domain as the rest of the page* (see below).

	It can require a lot of code to process the result.

JSON

JavaScript Object Notation (JSON) uses a similar syntax to object literal notation (which you met on p102) in order to represent data.

BENEFITS

	It can be called from any domain (see JSON-P/CORS).

	It is more concise (less verbose) than HTML/XML.

	It is commonly used with JavaScript (and is gaining wider use across web applications).

DRAWBACKS

	The syntax is not forgiving. A missed quote, comma, or colon can break the file.

	Because it is JavaScript, it can contain malicious content (see XSS on p228).
Therefore, you should only use JSON that has been produced by trusted sources.

XML: EXTENSIBLE MARKUP LANGUAGE

XML looks a lot like HTML, but the tags contain different words. The purpose of the tags is to describe the kind of data that they hold.

<?xml version=“1.0” encoding=“utf-8” ?>
<events>
 <event>
 <location>San Francisco, CA</location>
 <date>May 1</date>
 <map>img/map-ca.png</map>
 </event>
 <event>
 <location>Austin, TX</location>
 <date>May 15</date>
 <map>img/map-tx.png</map>
 </event>
 <event>
 <location>New York, NY</location>
 <date>May 30</date>
 <map>img/map-ny.png</map>
 </event>
</events>

You can process an XML file using the same DOM methods as HTML. Because different browsers deal with whitespace in HTML/XML documents in different ways, it is easier to process XML using jQuery rather than plain JavaScript (just as it can be with HTML).

In the same way that HTML is a markup language that can be used to describe the structure and semantics of a web page, XML can be used to create markup languages for other types of data - anything from stock reports to medical records.

The tags in an XML file should describe the data they contain. As a result, even if you have never seen the code to the left, you can see that the data describes information about several events. The <events> element contains several individual events. Each individual event is represented in its own <event> element.

XML works on any platform and gained wide popularity in the early 2000s because it made it easy to transfer data between different types of applications. It is also a very flexible data format because it is capable of representing complex data structures.

JSON: JAVASCRIPT OBJECT NOTATION

Data can be formatted using JSON (pronounced “Jason”). It looks very similar to object literal syntax, but it is not an object.

JSON data looks like the object literal notation which you met on p102; however, it is just plain text data (not an object).

The distinction may sound small but remember that HTML is just plain text, and the browser converts it into DOM objects.

You cannot transfer the actual objects over a network. Rather, you send text which is converted into objects by the browser.

[image: image]

KEYS

In JSON, the key should be placed in double quotes (not single quotes).

The key (or name) is separated from its value by a colon.

Each key/value pair is separated by a comma. However, note that there is no comma after the last key/value pair.

VALUES

The value can be any of the following data types (some of these are demonstrated above; others are shown on the right-hand page):

	DATA TYPE
	DESCRIPTION

	string
	Text (must be written in quotes)

	number
	Number

	Boolean
	Either true or false

	array
	Array of values - this can also be an array of objects

	object
	JavaScript object - this can contain child objects or arrays

	null
	This is when the value is empty or missing

WORKING WITH JSON DATA

JavaScript's JSON object can turn JSON data into a JavaScript object. It can also convert a JavaScript object into a string.

[image: image]

An object can also be written on one line, as you can see here:

The object on the left represents a series of three events, stored in an array called events. The array uses square bracket notation, and it holds three objects (one for each event).

JSON.stringify() converts JavaScript objects into a string, formatted using JSON. This allows you to send JavaScript objects from the browser to another application.

JSON.parse() processes a string containing JSON data. It converts the JSON data into a JavaScript objects ready for the browser to use.

Browser support: Chrome 3, Firefox 3.1, IE8, and Safari 4

[image: image]

LOADING HTML WITH AJAX

HTML is the easiest type of data to add into a page using Ajax. The browser renders it just like any other HTML. The CSS rules for the rest of the page are applied to the new content.

Below, the example loads data about three events using Ajax. (The result will look the same for the next four examples.)

The page users open does not hold the event data (highlighted in pink). Ajax is used to load it into the page from another file.

[image: image]

When a server responds to any request, it should send back a status message, to indicate if it completed the request. The values can be:

	200
	The server has responded and all is ok

	304
	Not modified

	404
	Page not found

	500
	Internal error on the server

If you run the code locally, you will not get a server status property, so this check must be commented out, and return true for the condition. If a server fails to return a status property, check the server setup.

Browsers will only let you use this technique to load HTML that comes from the same domain name as the rest of the page.

Whether HTML, XML, or JSON is being returned from the server, the process of setting up the Ajax request and checking whether the file is ready to be worked with is the same. What changes is how you deal with the data that is returned.

In the example on the right-hand page, the code to display the new HTML is placed inside a conditional statement.

Please note: These examples do not work locally in Chrome. They should work locally in Firefox and Safari. IE support is mixed until IE9.

Later in the chapter, you will see that jQuery offers better cross-browser support for Ajax.

1. An XMLHttpRequest object is stored in a variable called xhr.

2. The XMLHttpRequest object's open() method prepares the request. It has three parameters:

i) Either HTTP GET or POST to specify how to send the request

ii) The path to the page that will handle the request

iii) Whether or not the request is asynchronous (this is a Boolean)

3. Up to this point, the browser has not yet contacted the server to request the new HTML.

This does not happen until the script gets to the last line that calls the XMLHttpRequest object's send() method. The send() method requires an argument to be passed. If there is no data to send, you can just use null.

4. The object's onload event will fire when the server responds. It triggers an anonymous function.

5. Inside the function, a conditional statement checks if the status property of the object is 200, indicating the server responded successfully. If the example is run locally, there will be no response so you cannot perform this check.

[image: image]

A) The element that will contain the new HTML is selected. (Here it is an element whose id attribute has a value of content.)

B) The innerHTML property replaces the content of that element with the new HTML that has been sent from the server.

C) The new HTML is retrieved from the XMLHttpRequest object's responseText property.

Remember that innerHTML should only be used when you know that the server will not return malicious content. All content that has been created by users or third parties should be escaped on the server (see p228).

LOADING XML WITH AJAX

Requesting XML data is very similar to requesting HTML. However, processing the data that is returned is more complicated because the XML must be converted into HTML to be shown on the page.

On the right-hand page, you can see that the code to request an XML file is almost identical to the code to request an HTML file shown on the previous page. What changes is the part inside the conditional statement that processes the response (points 1-4 on the right-hand page). The XML must be turned into HTML. The structure of the HTML for each event is shown below.

1. When a server responds with XML, it can be obtained using the responseXML property of the XMLHttpRequest object. Here, the XML returned is stored in a variable called response.

2. This is followed by the declaration of a new variable called events, which holds all of the <event> elements from the XML document. (You saw the XML file on p375.)

3. The XML file is then processed using the DOM methods you learned about in Chapter 5. First, the for loop goes through each of the <event> elements, collecting the data stored in their child elements, and placing it into new HTML elements.

Each of those HTML elements is then added into the page.

4. Inside the for loop, you will see the getNodeValue() function is called several times. Its purpose is to get the contents from each of the XML elements. It takes two parameters:

i) obj is an XML fragment.

ii) tag is the name of the tag you want to collect the information from.

The function looks for the matching tag within the XML fragment (using the DOM's getElementsByTagName() method). It then gets the text from the first matching element within that fragment.

The XML for each event is being transformed into the following HTML structure:

[image: image]

[image: image]

LOADING JSON WITH AJAX

The request for JSON data uses the same syntax you saw in the requests for HTML and XML data. When the server responds, the JSON will be converted into HTML.

When JSON data is sent from a server to a web browser, it is transmitted as a string.

When it reaches the browser, your script must then convert the string into a JavaScript object. This is known as deserializing an object.

This is done using the parse() method of a built-in object called JSON. This is a global object, so you can use it without creating an instance of it first.

Once the string has been parsed, your script can access the data in the object and create HTML that can be shown in the page.

The HTML is added to the page using the innerHTML property. Therefore, it should only be used when you are confident that it will not contain malicious code (see XSS on p228).

This example will look the same as the last two examples when you view it in a web browser.

The JSON object also has a method called stringify(), which converts objects into a string using JSON notation so it can be sent from the browser back to a server. This is also known as serializing an object.

This method can be used when the user has interacted with the page in a way that has updated the data held in the JavaScript object (e.g., filling in a form), so that it can then update the information stored on the server.

Here you can see the JSON data that is being processed again (it was introduced on p377). Note how it is saved with the .json file extension.

[image: image]

1. The JSON data from the server is stored in a variable called responseObject. It is made available by the XMLHttpRequest object's responseText property

When it comes from the server, the JSON data is a string, so it is converted into a JavaScript object using the JSON object's parse() method.

2. The newContent variable is created to hold the new HTML data. It is set to an empty string outside the loop so that the code in the loop can add to the string.

3. Loop through the objects that represent each event using a for loop. The data in the objects are accessed using dot notation, just like you access other objects.

Inside the loop, the contents of the object are added to the newContent variable, along with their corresponding HTML markup.

4. When the loop has finished running through the event objects in responseObject, the new HTML is added to the page using the innerHTML property.

[image: image]

WORKING WITH DATA FROM OTHER SERVERS

Ajax works smoothly with data from your own server but - for security reasons - browsers do not load Ajax responses from other domains (known as cross-domain requests). There are three common workarounds.

A PROXY FILE ON THE WEB SERVER

The first way to load data from a remote server is to create a file on your server that collects the data from the remote server (using a server-side language such as ASP.net, PHP, NodeJS, or Ruby). The other pages on your site then request the data from the file on your server (which in turn gets it from the remote server). This is called a proxy, because it acts on behalf of the other page.

Because this relies upon creating pages in server-side languages, it is beyond the scope of this book.

JSONP (JSON WITH PADDING)

JSONP (sometimes written JSON-P) involves adding a <script> element into the page, which loads the JSON data from another server. This works because there are no restrictions on the source of script in a <script> element.

The script contains a call to a function, and the JSON-formatted data is provided as an argument to that function. The function that is called is defined in the page that requests the data, and is used to process and display the data. See next page.

ALTERNATIVES

Many people use jQuery when making requests for remote data, as it simplifies the process and handles backward compatibility for older browsers. As you can see in the next column, support for new approaches is an issue.

CROSS-ORIGIN RESOURCE SHARING

Every time a browser and server communicate, they send information to each other using HTTP headers. Cross-Origin Resource Sharing or CORS involves adding extra information to the HTTP headers to let the browser and server know that they should be communicating with each other.

CORS is a W3C specification, but is only supported by the most recent browsers and - because it requires setting up of HTTP headers on the server - is beyond the scope of this book.

CORS SUPPORT

Standard support is as follows: Chrome 4, FF 3.5, IE10, Safari 4 Android 2.1, iOS 3.2

IE8+9 used a non-standard XDomainRequest object to handle cross-origin requests.

HOW JSONP WORKS

First, the page must include a function to process the JSON data. It then requests the data from the server using a <script> element.

BROWSER

The HTML page will use two pieces of JavaScript:

1. A function that will process the JSON data that the server sends. In the example on the next page, the function is called showEvents().

2. A <script> element whose src attribute will request the JSON data from the remote server.

<script>
function showEvents(data) {
 // Code to process data and
 // display it in the page here
}
</script>

<script src=“http://example.org/jsonp”>
</script>

The server returns a file that calls the function that processes the data. The JSON data is provided as an argument to that function.

SERVER

When the server responds, the script contains a call to the named function that will process the data (that function was defined in step 1). This function call is the “padding” in JSONP. The JSON-formatted data is sent as an argument to this function.

So, in this case, the JSON data sits inside the call to the showEvents() function.

showEvents({
 “events”: [
 {
 “location”: “San Francisco, CA”,
 “date”: “May 1”,
 “map”: “img/map-ca.png”
 }…
]
});

It is important to note that there is no need to use the JSON object's parse() or stringify() methods when working with JSONP. Because the data is being sent as a script file (not as a string), it will be treated as an object.

The file on the server is often written so that you can specify the name of the function that will process the data that is returned. The name of the function is usually given in the query string of a URL: http://example.org/upcomingEvents.php?callback=showEvents

USING JSONP

This example looks the same as the JSON example, but the event details come from a remote server. Therefore, the HTML uses two <script> elements.

The first <script> element loads a JavaScript file that contains the the showEvents() function. This will be used to display the deals information.

The second <script> element loads the information from a remote server. The name of the function that processes the data is given in the query string.

[image: image]

[image: image]

1. The code in the for loop (which is used to process the JSON data and create the HTML) and the line that writes it into the page are the same as the code that processed the JSON data from the same server.

There are three key differences:

i) It is wrapped in a function called showEvents().

ii) The JSON data comes in as an argument of the function call.

iii) The data does not need to be parsed with JSON.parse(). In the for loop, it is just referred to by the parameter name data.

Instead of using a second <script> element in the HTML pages, you can use JavaScript to write that <script> element into the page (just like you would add any other element into the page). That would place all the functionality for the external data in the one JavaScript file.

JSONP loads JavaScript, and any JavaScript data may contain malicious code. For this reason, you should load data only from trusted sources.

Since JSONP is loading data from a different server, you might add timer to check if the server has replied within a fixed time (and, if not, show an error message).

You will see more about handling errors in Chapter 10, and there is an example of a timer in Chapter 11 (where you create a content slider).

[image: image]

[image: image]

The file that is returned from the server wraps the JSON-formatted data inside the call to the showEvents() function. So the showEvents() function is only called when the browser has loaded this remote data.

JQUERY & AJAX: REQUESTS

jQuery provides several methods that handle Ajax requests. Just like other examples in this chapter, the process involves two steps: making a request and handling the response.

Here you can see the six ways jQuery lets you make Ajax requests. The first five are all shortcuts for the $.ajax() method, which you meet last.

The .load() method operates on a jQuery selection (like most jQuery methods). It loads new HTML content into the selected element(s).

You can see that the other five methods are written differently. They are methods of the global jQuery object, which is why they start with $. They only request data from a server; they do not automatically use that data to update the elements of a matched set, which is why the $ symbol is not followed by a selector.

When the server returns data, the script needs to indicate what to do with it.

	METHOD / SYNTAX
	DESCRIPTION

	.load()
	Loads HTML fragments into an element It is the simplest method for retrieving data

	$.get()
	Loads data using the HTTP GET method Used to request data from the server

	$.post()
	Loads data using the HTTP POST method Used to send data that updates data on server

	$.getJSON()
	Loads JSON data using a GET request Used for JSON data

	$.getScript()
	Loads and executes JavaScript data using GET Used for JavaScript (e.g., JSONP) data

	$.ajax()
	This method is used to perform all requests The above methods all use this under the hood

JQUERY & AJAX: RESPONSES

When using the .load() method, the HTML returned from the server is inserted into a jQuery selection. For the other methods, you specify what should be done when the data that is returned using the jqXHR object.

	JQXHR PROPERTIES
	DESCRIPTION

	responseText
	Text-based data returned

	responseXML
	XML data returned

	status
	Status code

	statusText
	Status description (typically used to display information about an error if one occurs)

	JQXHR METHODS
	DESCRIPTION

	.done()
	Code to run if request was successful

	.fail()
	Code to run if request was unsuccessful

	.always()
	Code to run if request succeeded or failed

	.abort()
	Halt the communication

jQuery has an object called jqXHR, which makes it easier to handle the data that is returned from the server. You will see its properties and methods (shown in the tables on the left) used over the next few pages.

Because jQuery lets you chain methods, you can use the .done(), .fail(), and .always() methods to run different code depending on the outcome of loading the data.

RELATIVE URLS

If the content you load via Ajax contains relative URLs (e.g., images and links) those URLs get treated as if they are relative to the original page that was loaded.

If the new HTML is in a different folder from the original page, the relative paths could be broken.

1. This HTML file uses Ajax to load content from a page in the folder shown in step 2.

2. The page in the this folder has an image whose path is a relative link to the second folder:

3. The HTML file cannot find the image as the path is no longer correct - it is not in a child folder.

[image: image]

LOADING HTML INTO A PAGE WITH JQUERY

The .load() method is the simplest of the jQuery Ajax methods. It can only be used to load HTML from the server, but when the server responds, the HTML is then loaded into the jQuery Selection for you.

JQUERY SELECTOR

You start by selecting the element that you want the HTML code to appear inside.

URL OF THE PAGE

Then you use the .load() method to specify the URL of the HTML page to load.

SELECTOR

You can specify that you want to load only part of the page (rather than the whole page).

[image: image]

1. This creates a jQuery object with the element whose id attribute has a value of content.

2. This is the URL of the page you want to load the HTML from. There must be a space between the URL and the selector in step 3.

3. This is the fragment of the HTML page to show. Again, it is the section whose id attribute has a value of content.

Here, links in the top right corner take the user to other pages. If the user has JavaScript enabled, when they click on a link, code inside the .on() event method stops it from loading a whole new page. Instead, the .load() method will replace the area highlighted in pink (whose id attribute has a value of content) with the equivalent area from the page that the user just requested. Only the pink area is refreshed - not the whole page.

[image: image]

LOADING CONTENT

When users click on any of the links in the <nav> element, one of two things will occur:

If they have JavaScript enabled, a click event will trigger an anonymous function that loads new content into the page.

If they do not have JavaScript enabled, they will move from page to page as normal.

Inside the anonymous function, five things happen:

1. e.preventDefault() stops the link taking users to a new page.

2. A variable called url holds the URL of the page to load. This is collected from the href attribute of the link the user clicked on. It indicates which page to load.

3. The class attributes on the links are updated to indicate which page is the current page.

4. The element holding the content is removed.

5. The container element is selected and .load() fetches new the new content. It is hidden straight away using .hide() so that fadeIn() can fade it in.

[image: image]

[image: image]

The links still work if JavaScript is not enabled. If JavaScript is enabled, jQuery will load content into the <div> whose id has a value of content from the target URL. The rest of the page does not need to be reloaded.

JQUERY'S AJAX SHORTHAND METHODS

jQuery provides four shorthand methods to handle specific types of Ajax requests.

The methods below are all shorthand methods. If you looked at the source code for jQuery, you would see that they all use the $.ajax() method.

You will meet each one over the next few pages because they introduce key aspects of the $.ajax() method.

These methods do not work on a selection like other jQuery methods, which is why you prefix them with only the $ symbol rather than a jQuery selection. They are usually triggered by an event, such as the page having loaded or the user interacting with the page (e.g., clicking on a link, or submitting a form).

With an Ajax request, you will often want to send data to the server, which will in turn affect what the server sends back to the browser.

As with HTML forms (and the Ajax requests you met earlier in the chapter), you can send the data using HTTP GET or POST.

	METHOD / SYNTAX
	DESCRIPTION

	$.get(url[, data][, callback][, type])
	HTTP GET request for data

	$.post(url[, data][, callback][, type])
	HTTP POST to update data on the server

	$.getJSON(url[, data][, callback])
	Loads JSON data using a GET request

	$.getScript(url[, callback])
	Loads and executes JavaScript (e.g., JSONP) using a GET request

The parameters in square brackets are optional.

$ shows that this is a method of the jQuery object.
url specifies where the data is fetched from.
data provides any extra information to send to the server.
callback indicates that the function should be called when data is returned (can be named or anonymous).
type shows the type of data to expect from the server.

Note: The examples in this section only work on a web server (and not on local file systems). Server-side languages and server setup are beyond the scope of this book, but you can try out the examples on our website. PHP files have been included with the download code, but they are for demonstration purposes only.

REQUESTING DATA

Here, users vote for their favorite t-shirt without leaving the page.

1. If users click on a t-shirt an anonymous function is triggered.

2. e.PreventDefault() stops the link opening a new page.

3. The user's choice is the value of the id attribute on the image. It is stored in a variable called queryString in the format of a query string, e.g., vote=gray

4. The $.get() method is called using three parameters:
i) The page that will handle the request (on the same server).
ii) The data being sent to the server (here it is a query string, but it could be JSON).
iii) The function that handles the result the server sends back; in this case it is an anonymous function.

When the server responds, the anonymous callback function handles the data. In this case, the code in that function selects the element that the held the t-shirts and replaces it with the HTML sent back from the server. This is done using jQuery's .html() method.

[image: image]

[image: image]

[image: image]

The t-shirt links are created in the JavaScript file to ensure they only show if the browser supports JavaScript (the resulting HTML structure is shown above). When the server responds, it does not have to send back HTML; it can return any kind of data that the browser can process and use.

SENDING FORMS USING AJAX

To send data to the server, you are likely to use the .post() method. jQuery also provides the .serialize() method to collect form data.

SENDING FORM DATA

The HTTP POST method is often used when sending form data to a server and it has a corresponding function, the .post() method. It takes the same three parameters as the .get() method:

i) The name of the file on the (same) server that will process the data from the form

ii) The form data that you are sending

iii) The callback function that will handle the response from the server

On the right-hand page you can see the $.post() method used with a method called .serialize(), which is very helpful when working with forms. Together they send the form data to the server.

COLLECTING FORM DATA

jQuery's .serialize() method:

	Selects all of the information from the form

	Puts it into a string ready to send to the server

	Encodes characters that cannot be used in a query string

Typically it will be used on a selection containing a <form> element (although it can be used on individual elements or a subsection of a form).

It will only send successful form controls, which means it will not send:

	Controls that have been disabled

	Controls where no option has been selected

	The submit button

SERVER-SIDE

When a server-side page handles a form, you might want the same page to work whether:

	It was a normal request for a web page (in which case you would send the whole page); or

	It was an Ajax request (where you might respond with just a fragment of the page)

On the server, you can check whether a page is being requested by an Ajax call using the X-Requested-With header.

If it is set and has a value of XMLHttpRequest, you know that the request was an Ajax request.

SUBMITTING FORMS

1. When users submit the form, an anonymous function runs.

2. e.PreventDefault() stops the form from submitting.

3. The form data is collected by the .serialize() method and stored in the details variable.

4. The $.post() method is called using all three parameters:

i) The url of the page that the data is being sent to

ii) The data that was just collected from the form

iii) A callback function that will display the results to the user

5. When the server responds, the content of the element whose id attribute has a value of register is overwritten with new HTML sent from the server.

[image: image]

[image: image]

[image: image]

This example needs to be run on a web server. The server-side page will return a confirmation message (but it does not validate the data submitted nor send a confirmation email).

LOADING JSON & HANDLING AJAX ERRORS

You can load JSON data using the $.getJSON() method. There are also methods that help you deal with the response if it fails.

LOADING JSON

If you want to load JSON data, there is a method called $.getJSON() which will retrieve JSON from the same server that the page is from. To use JSONP you should use the method called $.getScript().

AJAX AND ERRORS

Occasionally a request for a web page will fail and Ajax requests are no exception. Therefore, jQuery provides two methods that can trigger code depending on whether the request was successful or unsuccessful, along with a third method that will be triggered in both cases (successful or not).

Below is an example that will demonstrate these concepts. It loads fictional exchange rates.

[image: image]

SUCCESS / FAILURE

There are three methods you can chain after $.get(), $.post(), $.getJSON(), and $.ajax() to handle success / failure. These methods are:

.done() - an event method that fires when the request has successfully completed

.fail() - an event method that fires when the request did not complete successfully

.always() - an event method that fires when the request has completed (whether it was successful or not)

Older scripts may use the .success(), .error(), and .complete() methods instead of these methods. They do the same thing, but these newer methods have been the preferred option since jQuery 1.8.

[image: image]

JSON & ERRORS

1. In this example, JSON data representing currency exchange rates is loaded into the page by a function called loadRates().

2. On the first line of the script an element is added to the page to hold the exchange rate data.

3. The function is called on the last line of the script.

4. Inside loadRates(), the $.getJSON method tries to load some JSON data. There are three methods chained after this method. They do not all run.

5. .done() only runs if the data is retrieved successfully. It contains an anonymous function that shows exchange rates and the time they were displayed.

6. .fail() only runs if the server cannot return the data. Its job is to display an error message to the user.

7. .always() will run whether or not the answer was returned. It adds a refresh button to the page, along with an event handler that triggers the loadRates() function again.

[image: image]

AJAX REQUESTS WITH FINE-GRAINED CONTROL

The $.ajax() method gives you greater control over Ajax requests. Behind the scenes, this method is used by all of jQuery's Ajax shorthand methods.

Inside the jQuery file, the $.ajax() method is used by the other Ajax helper methods that you have seen so far (which are offered as a simpler way of making Ajax requests).

This method offers greater control over the entire process, with over 30 different settings that you can use to control the Ajax request. You can see a selection of these settings in the table below. These settings are provided using object literal notation (the object is referred to as the settings object).

The example on the right-hand page looks and works like the one that demonstrated the .load() method on p390. But it uses the $.ajax() method instead.

	The settings can appear in any order, as long as they use valid JavaScript literal notation.

	The settings that take a function can use a named function or an anonymous function written inline.

	$.ajax() does not let you load just one part of the page so the jQuery .find() method is used to select the required part of the page.

	SETTING
	DESCRIPTION

	type
	Can take values GET or POST depending on whether the request is made using HTTP GET or POST

	url
	The page the request is being sent to

	data
	The data that is being sent to the server with the request

	success
	A function that runs if the Ajax request completes successfully (similar to the .done() method)

	error
	A function that runs if there is an error with the Ajax request (similar to the .fail() method)

	beforeSend
	A function (anonymous or named) that is run before the Ajax request starts In the example on the right, this is used to trigger a loading icon

	complete
	Runs after success/error events In the example on the right, this removes a loading icon

	timeout
	The number of milliseconds to wait before the event should fail

CONTROLLING AJAX

When the user clicks on a link in the <nav> element, new content is loaded into the page. This is very similar to the example on p390 for the .load() method, but that shorthand method only required one line.

1. Here the click event handler triggers the $.ajax() method.

This example sets seven settings for the $.ajax() method. The first three are properties, the final four are anonymous functions triggered at different points in the Ajax request.

2. This example sets the timeout property to wait two seconds for the Ajax response.

3. The code also adds elements into the page to show that data is loading. You may not see them appear if the request is handled quickly, but you will see them if the page is slower to load.

4. If the Ajax request fails, then an error message will be shown to the user.

[image: image]

[image: image]

EXAMPLE
AJAX & JSON

This example shows information about three events. The data used comes from three different sources.

1) When the page loads, event locations are coded into the HTML. Users click on an event in the left-hand column; it updates the timetable in the middle column.

In the left column, the links have an id attribute whose value is a two-letter identifier for the state the event is in:
… Austin, TX

2) The timetables are stored in a JSON object, in an external file collected when the DOM has loaded. When users click on a session in the middle column, its description is shown in the right-hand column.

In the middle column showing timetables, the title of each session is used inside a link that will show the description for the session.

Circuit Hacking

3) Descriptions of all sessions are stored in one HTML file. Individual descriptions are selected using jQuery's .load() method (and the # selector shown on p390).

In the right column, the session description is taken from an HTML file. Each session is stored in an element whose id attribute contains the title of the session (with spaces replaced by dashes).

<div id=“Intro-to-3D-Modeling”>
 <h3>Intro to 3D Modeling</h3>
 <p>Come learn how to create 3D models of …</p>
</div>

Because links are added and removed, event delegation is used.

This example uses data from three separate sources to demonstrate Ajax techniques.

In the left-hand column you can see three locations for an event. These are written into the HTML for the timetable page. Each one is a link.

1. Clicking on an event loads the session times for that event. They are stored in a file called example.json, which is collected when the DOM has loaded.

2. Clicking on a session will load its description. They are stored in descriptions.html, which is loaded when a user clicks on a session title.

[image: image]

[image: image]

Here you can see the HTML page. It has a header, followed by three columns. Two scripts appear before the closing </body> tag.

Left column: list of the events
Middle column: timetable of the sessions
Right column: description of the sessions

[image: image]

[image: image]

When the script is run, the loadTimetable() function loads the timetables for all three events from a file formatted using JSON, stored in example.json. The data is cached in a variable called times.

Events are identified by a two-letter code for the state. You can see a sample of the JSON-formatted data above and a sample of the HTML that will be created using that data.

[image: image]

1. The script that does all the work is in example.js. It runs when the DOM has loaded.

2. The times variable will be used to store the session timetables for all of the events.

3. Before the browser requests the JSON data, the script checks if the browser supports the overrideMimeType() method. This is used to indicate that the response from the server should be treated as JSON data. This method can be used in case the server is accidentally set up to indicate that the data being returned is in any other format.

4. Next you can see a function called loadTimetable(), which is used to load the timetable data from a file called example.json.

5. If the data loads successfully, the data for the timetables will be stored in a variable called times.

6. If it fails to load, an error message will be shown to the users.

7. The loadTimetable() function is then called to load the data.

[image: image]

1. A jQuery event helper method waits for users to click on the name of an event. It will load the timetable for that event into the middle column.

2. The preventDefault() method prevents the link from opening a page (because it is will show the AJAX data instead).

3. A variable called loc is created to hold the name of the event location. It is collected from the id attribute of the link that was clicked.

4. The HTML for the timetables will be stored in a variable called newContent. It is set to a blank string.

5. Each session is stored inside an element, which starts by displaying the time of the session.

6. A link is added to the timetable, which will be used to load the description. The link points to the descriptions.html file. It is followed by a # symbol so it links to the correct part of the page.

7. The session title is added after the # symbol. The .replace() method replaces spaces in the title with a dash to match the value of the id attribute in the descriptions.html file for each session.

8. Inside the link you can see the title of the session.

9. The new content is added into the middle column.

10. The class attributes on the event links are updated to shows which event is the current event.

11. The third column is emptied if it had content.

[image: image]

1. Another jQuery event helper method is set up to respond when a user clicks on a session in the middle column. It loads a description of the session.

2. preventDefault() stops the link opening.

3. A variable called fragment is created to hold the link to the session. This is collected from the href attribute of the link that was clicked.

4. A space is added before the # symbol so that it is the correct format for the jQuery load() method to collect part (not all) of the HTML page, e.g., description.html #Arduino-Antics

5. A jQuery selector is used to find the element whose id attribute has a value of details in the third column. The .load() method is then used to load the session description into that element.

6. The links are updated so that they highlight the appropriate session in the middle column.

7. The main navigation is set up as shown on p391.

SUMMARY

AJAX & JSON

	Ajax refers to a group of technologies that allow you to update just one part of the page (rather than reload a whole page).

	You can incorporate HTML, XML, or JSON data into your pages. (JSON is becoming increasingly popular.)

	To load JSON from a different domain, you can use JSONP but only if the code is from a trusted source.

	jQuery has methods that make it easier to use Ajax.

	.load() is the simplest way to load HTML into your pages and allows you to update just a part of the page.

	.ajax() is more powerful and more complex. (Several shorthand methods are also offered.)

	It is important to consider how the site will work if the user does not have JavaScript enabled, or if the page is not able to access the data from a server.

* Browsers only let Ajax load HTML and XML from the same domain name as the rest of the page (e.g., if the page is on www.example.com, the Ajax request must return data from www.example.com).

 9

APIS

User interfaces allow humans to interact with programs. Application Programming Interfaces (APIs) let programs (including scripts) talk to each other.

Browsers, scripts, websites, and other applications frequently open up some of their functionality so that programmers can interact with them. For example:

BROWSERS

The DOM is an API. It allows scripts to access and update the contents of a web page while loaded in the browser. In this chapter you will meet some HTML5 JavaScript APIs that provide access to other browser features.

SCRIPTS

jQuery is a JavaScript file with an API. It allows you to select elements, then use its methods to work with those elements. It is just one of many scripts that let you to perform powerful tasks using their code.

PLATFORMS

Sites such as Facebook, Google, and Twitter open up their platforms so that you can access and update data they store (via websites and apps). In this chapter you see how Google lets you to add their maps to your sites.

You do not need to know how the other script or program achieves its task; you only need to know what it does, how to ask it to do something, and how to understand its replies. Therefore, this chapter will familiarize you with the form in which APIs are described.

[image: image]

PLAYING NICELY WITH OTHERS

You do not always need to know how a script or program works, as long you know how to ask it to do something, and how to process its response. The questions you can ask and the format of the answers form the API.

WHAT THE API CAN DO

If there is a script or program that offers functionality you need, consider using it rather than writing something from scratch.

Because each script, program, or platform has different features, the first thing you need to do is understand what the API allows you to do. For example:

	The DOM and jQuery APIs allow you to access and update a web page that is loaded in the browser and respond to events.

	Facebook, Google+, and Twitter APIs let you to access and update profiles and create status updates on their platforms.

When you know what the API allows you to do, you can decide if it is the right tool for the job.

HOW TO ACCESS IT

Next you need to know how to access the functionality of the API in order to use it.

The DOM's functionality is built into the JavaScript interpreter in the browser.

With jQuery you need to include the jQuery script from your server or a CDN in your pages.

Facebook, Google+, Twitter, and other sites provide various ways to access the functionality of their platforms using APIs.

THE SYNTAX

Finally, you need to learn how to ask the API to do something and the format in which you should expect any replies.

As long as you know how to call a function, create an object, and access the properties and methods of an object, you will be able to use any JavaScript API.

This chapter introduces you to a range of APIs so you gain the confidence to learn more about them and other APIs.

HTML5 JAVASCRIPT APIS

First, we will look at some of the new HTML5 APIs.
Along with the markup in the HTML5 specification, a set of APIs define that describe how to interact with features of web browsers.

WHY HTML5 HAS APIS

As technologies evolve, so does the browsing experience. For example, smartphones may have smaller screens and less power than the latest desktop computers; but they include features that are rarely found on desktop machines such as accelerometers and GPS.

The HTML5 specification has not only added new markup, but also includes a new set of JavaScript APIs that standardize how you can make use of these new features in any device that implements them.

WHAT THEY COVER

Each of the HTML5 APIs focuses on one or more objects that browsers implement to deliver specific functionality.

For example, the geolocation API describes a geolocation object that lets you ask users for their location and two objects that handle the browsers response.

There are also APIs that offer improvements over existing functionality. For example, the web storage API lets you store information within the browser without relying on cookies.

WHAT YOU'LL LEARN

There is not space for an exhaustive reference of each of the HTML5 APIs (there have been whole books dedicated to these new HTML5 features). But you will meet three of the APIs and see examples of how to work with them.

This should get you used to using the HTML5 APIs so that you can then go on and learn more about them as you need them. You will also learn how you can test to see whether or not a browser supports the functionality in any of the APIs.

[image: image]

FEATURE DETECTION

When you write code that uses the HTML5 APIs (or any other new feature in a web browser), you may need to check if the browser supports that feature before your code tries to use it.

The HTML5 APIs describe objects that browsers use to implement new functionality. For example, you are about to meet an object called the geolocation object that is used to determine a user's location. However, this object is only supported in modern browsers, so you need to check whether a browser supports this it before trying to use the object.

[image: image]

You may not be surprised to hear that there are some cross-browser issues with feature detection.

For example, in the case of the code above, there was a bug in IE9 which could result in a memory leak when you check for the geolocation object. This could slow down your pages.

It is possible to check whether a browser supports an object using a conditional statement.

If the browser supports the object, then the condition will return a truthy value and the first set of statements are run. If it is not implemented, the second set of statements is run.

if (navigator.geolocation) {
 // Returns truthy so it is supported
 // Run statements in this code block
} else {
 // Not supported / turned off
 // Or user rejected request
}

Luckily, there is a library called Modernizr, which takes away the hassles of cross-browser issues (like jQuery for feature detection). It is a better way to check if the browser supports recent features. The script is regularly updated and refined to deal with cross-browser issues as they are discovered, so they are less likely to affect you.

MODERNIZR

Modernizr is a script you can use in your pages to tell whether the browser supports features of HTML, CSS, and JavaScript. It will be used in the coming HTML5 API examples.

HOW TO GET MODERNIZR

First, you need to download the script from the Modernizr.com website, where you will see:

	A development version of the script. It is uncompressed and features every check that the script is capable of performing.

	A tool (see screenshot below) that lets you select which features you want to test for. You can then download a custom version of the script that only contains the checks you need. On a live site, you should not test for features that you do not use as it would slow your site down.

In our examples, Modernizr is used near the end of the page just before the script that uses it. But you may see Modernizr included in the <head> of an HTML page (if the content of the page is uses features that you are testing for).

[image: image]

HOW MODERNIZR WORKS

When you include the Modernizr script in your page, it adds an object called Modernizr, which tests whether the browser supports the features that you specified that it should test for. Each feature you want it to test becomes a property of the Modernizr object. Their values are a Boolean (true or false) that tell you if a feature is supported.

You can use Modernizr as a condition like this: If Modernizr's geolocation property returns true run the code in the curly braces:

if (Modernizr.geolocation) {
 // Geolocation is supported
}

MODERNIZR PROPERTIES

In the screenshot on the left, you can see some of the features that Modernizr can check for. To see a full list of Modernizr's properties, visit:
modernizr.github.io/Modernizr/test/index.html

GEOLOCATION API: FINDING USERS' LOCATIONS

An increasing number of sites offer extra functionality to users who disclose their location. The users' location can be requested using the geolocation API.

WHAT THE GEOLOCATION API DOES

Browsers that implement the geolocation API let users share their location with websites. The location data is provided in the form of longitude and latitude points. There are several ways for the browser to determine its location, including using data from its IP address, wireless network connection, cell towers, or GPS hardware.

In some devices, the geolocation API can give you more data along with longitude and latitude. But, we focus on these features because they have the most support. Having seen how to use them, if you need to work with the other features, you will be able to.

HOW TO ACCESS GEOLOCATION

The geolocation API is available by default in any browser that supports it (just like the DOM is). It was first supported in IE9, Firefox 3.5, Safari 5, Chrome 5, Opera 10.6, iOS3, and Android 2.

Browsers that support geolocation allow users to turn the feature on and off. If it is on, the browser will ask users if they want to share data for each individual web site that requests that information.

The way in which the browser asks the user if they will share location data differs from one browser to the next and one device to the next.

[image: image]

[image: image]

The geolocation API relies on an object called geolocation. If you want to try and make use of the user's location, first you need to check if the browser supports this object. This example will use the Modernizr script is used to perform this check.

1. A conditional statement is used to check whether the browser supports geolocation.

2. If geolocation is supported, the browser returns a truthy value and the first set of statements run. They request the user's location using the geolocation object's getCurrentPosition()method.

3. If geolocation is not supported, then a second set of statements is run.

if (Modernizr.geolocation) {
 // Returns truthy so it is supported
 // Run statements in this code block
} else {
 // Not supported / turned off
 // Or user rejected request
}

Once you call the getCurrentPosition() method, the code continues onto the next line because it is an asynchronous request (like the Ajax calls in the last chapter). The request is asynchronous because the browser will take a while to determine the user's location (and you do not want the rest of the page to stop loading while the browser works out where the user is). Therefore, the method has two parameters: getCurrentPosition(success, fail)

success is the name of a function to call if the longitude and latitude are successfully returned. This method will automatically be passed an object called position, which holds the user's location.

fail is the name of a function called if the details cannot be obtained. This method will automatically be passed an object called PositionError containing details about the error.

So in all, there are three new objects you need to use in order to work with the geolocation API: geolocation, position, and PositionError. Their syntax is shown on the next page.

THE GEOLOCATION API

There are three objects involved in adding geolocation to your web page. The tables demonstrate how API documentation typically describes the objects, properties, and the methods you can use.

geolocation OBJECT

The geolocation object is used to request location data. It is a child of the navigator object.

	METHOD
	RETURNS

	getCurrentPosition(success, fail)
	Requests the position of the user and, if the user permits, returns the user's latitude / longitude plus other location information
success is the name of a function to call if coordinates are retrieved fail is the name of a function to call if coordinates are not returned

Position OBJECT

If a user's location is found, a Position object is sent to the callback function. It has a child object called coords whose properties hold the user's location. If a device supports geolocation, it must provide a minimum amount of data (see the required column); other properties are optional (they may depend on the device's capabilities).

[image: image]

PositionError OBJECT

If location is not determined, the callback function is passed the PositionError object.

[image: image]

WORKING WITH LOCATION

1. In this example, Modernizr checks if geolocation is supported by the browser and enabled by the user.

2. When getCurrentPosition() is called, the user will be asked for permission to share their location.

3. If the location is gained, the user's latitude and longitude are written into the page.

4. If it is not supported, then the user will see a message that shows their location could not be found.

5. If the location is not gained (for any reason), again the message will say that a location cannot be found. The error code is logged to the browser console.

[image: image]

[image: image]

If you are unable to see a result on a desktop browser, try the example on a smart phone. You can try all examples directly from the website for the book, http://www.javascriptbook.com/. To support older browsers, search for a script called geoPosition.js

WEB STORAGE API: STORING DATA IN BROWSERS

Web storage (or HTML5 storage) lets you store data in the browser. There are two different types of storage: local and session storage.

HOW TO ACCESS THE STORAGE API

Before HTML5, cookies were the main mechanism for storing information in the browser. But cookies have several limitations, most notably they are:

	Not able to hold much data.

	Sent to the server every time you request a page from that domain.

	Not considered secure.

Therefore, HTML5 introduced a storage object. There are two different flavors of the storage object, localStorage and sessionStorage. Both use the same methods and properties. The differences are how long the data is stored for and whether all tabs can access the data that is being stored.

[image: image]

Commonly, browsers store 5MB of data per domain in a storage object. If a site tries to store more than 5mb of data, the browser will usually ask the user whether they want to allow this site to store more information (never rely on users agreeing to give a site more space).

The data is stored as properties of the storage objects (using in key/value pairs). The value in the pair is always a string. To protect the information that a website stores in these storage objects, browsers employ a same origin policy, which means data can only be accessed by other pages in the same domain.

[image: image]

These four parts of the URL must match:

1. Protocol: The protocol must be a match. If data was stored by a page that starts http, the storage object cannot be accessed via https.

2. Subdomain: The subdomain name must match. For example, maps.google.com cannot access data stored by www.google.com.

3. Domain: The domain name must match. For example, google.com cannot access local storage from facebook.com.

4. Port: The port number must match. Web servers can have many ports. Usually a port number is not specified in a URL, and the site uses port 80 for web pages, but the port number can be changed.

The storage objects are just one of the new HTML5 APIs for storing data. Others include access to the file system (through the FileSystem API) and client side databases such as the Web SQL database.

HOW TO ACCESS THE STORAGE API

Both of these objects are implemented on the window object, so you do not need to prefix the method names with any other object name.

To save an item into the storage object, you use the setItem() method, which takes two parameters: the name of the key and the value associated with it.

To retrieve a value from the storage object you use the getItem() method, passing it the key.

// Store information
localStorage.setItem(‘age’, ‘12’);
localStorage.setItem(‘color’, ‘blue’);
// Access information and store in variable
var age = localStorage.getItem(‘age’);
var color = localStorage.getItem(‘color’);
// Number of items stored
var items = localStorage.length;

Data for the storage objects is stored and accessed in a synchronous manner: all other processing stops while the script accesses or saves the data. Therefore, if a lot of data is regularly accessed or stored, the site can appear slower to use.

You can also set and retrieve keys and values of the storage objects as you might with other objects using dot notation.

The storage objects are commonly used to store JSON-formatted data. The JSON object's:

	parse() method is used to turn the JSON-formatted data into a JavaScript object

	stringify() method is used to transform objects into JSON-formatted strings

// Store information (object notation)
localStorage.age = 12;
localStorage.color = ‘blue’;
// Access information (object notation)
var age = localStorage.age;
var color = localStorage.color;
// Number of items stored
var items = localStorage.length;

Below, you can see a table that shows the methods and property of the storage objects. This table is very similar to the one you saw for the geolocation API and is indicative of the types of tables you see in documentation for APIs.

	METHOD
	DESCRIPTION

	setItem(key, value)
	Creates a new key/value pair

	getItem(key)
	Gets the value for the specified key

	removeItem(key)
	Removes the key/value pair for the specified key

	clear()
	Clears all information from that storage object

	PROPERTY
	DESCRIPTION

	length
	Number of keys

LOCAL STORAGE

The examples on this page and the right-hand page store what the user enters into text boxes, but both examples store it for different lengths of time.

1. A conditional statement is used to check if the browser supports the relevant storage API.

2. References to the inputs for the username and answer are stored in variables.

3. The script checks to see if the storage object has a value for either of these elements using the getItem() method. If so, it is written into the appropriate input by updating its value property.

4. Each time an input event fires on one of the inputs, the form will save the data to the localStorage or sessionStorage object. It will automatically be shown if you refresh the page.

[image: image]

[image: image]

SESSION STORAGE

sessionStorage is more suited to information that:

	Changes frequently (each time the user visits the site - such as whether they are logged in or location data).

	Is personal and should not be viewed by other users of the device.

localStorage is best suited to information that:

	Only changes at set intervals (such as timetables / price lists), which can be helpful to store offline.

	The user might want to come back and use again (such as saving preferences / settings).

[image: image]

[image: image]

HISTORY API & PUSHSTATE

If you move from one page to another, the browser's history remembers which pages you visited. But Ajax applications do not load new pages, so they can use the history API to update the location bar and history.

WHAT THE HISTORY API DOES

Each tab or window in the browser keeps its own history of pages you have viewed. When you visit a new page in that tab or window, the URL is added to the list of pages you have visited in the history.

Because of this, you can use the back and forward buttons in a browser to move between pages you have visited in that tab or window. However, on sites that use Ajax to load information, the URL is not automatically updated (and the back button might not show the last thing that the user was viewing).

HTML5's history API can help fix this problem. It lets you interact with the browser's history object:

	You can update the browser history stack using the pushState() and replaceState() methods.

	Extra information can be stored with each item.

As you will see, information can be added to the history object when an Ajax request is made, and the user can be shown the right content when they press back or forward buttons.

[image: image]

Browsing pages:
As you browse, the URL in your web browser's address bar updates. The page is also added to the top of something called the history stack.

Pressing back: takes you back down the stack
Pressing forward: takes you up the stack (where possible)
New page: if you request a new page, it will replace anything above the current page in the stack

State refers to the condition that something is in at a particular time. The browser history is like a pile (or stack) of states, one on top of the other. The three methods on this page allow you to manipulate the state in browsers.

ADDING INFORMATION TO THE HISTORY OBJECT

pushState() adds an entry to the history object. replaceState() updates the current entry. Both take the same three parameters (below), each of which updates the history object.

Because the history object is a child of the window object, you can use its name directly in the script; you can write history.pushState(), you do not need to write window.history.pushState().

[image: image]

1. The history object can store information with each item in the history. This is provided in the state parameter and can be retrieved when you go back to that page.

2. Currently unused by most browsers, the title parameter is intended to change the title of the page. (You can specify a string for this value, ready for when browsers support it.)

3. The URL that you want the browser to show for this page. It must be on the same origin as the current URL and it should show the correct content if the user goes back to that URL.

GETTING INFORMATION FROM THE HISTORY OBJECT

Adding content to the browser history is only part of the solution; the other half is loading the right content when the user presses the back or forward buttons. To help show the right content, the onpopstate event fires whenever the user requests a new page.

This onpopstate event is used to trigger a function that will load the appropriate content into the page. There are two ways to determine what content should be loaded into the page:

	The location object (which represents the browser's location bar)

	The state information in the history object

The location object:
If the user presses back or forward, the address bar will update itself, so you can get the URL for the page that should be loaded using location.pathname (the location object is a child of the window object and its pathname property is the current URL). This works well when you are updating an entire page.

The state:
Because the first parameter of the pushState() method stores data with the history object for that page, you can use it to store JSON-formatted data. That data can then be loaded directly into the page. (This is used when the new content loads data rather than a traditional web page.)

THE HISTORY OBJECT

The HTML5 history API describes the functionality of the history object in modern web browsers. It lets you access and update the browser history (but only for pages the user visited on your site).

Even if the visitor is not taken to a new page in the browser window (for example, when only a part of the page is updated using Ajax), you can modify the history object to ensure that the back and forward buttons work as the user would expect them to on non-Ajax pages.

Again, the table below is indicative of the kind you might see in API documentation. As you become comfortable using the methods, properties, and events of an object you will find it easier to work with all kinds of APIs.

history OBJECT

	METHOD
	DESCRIPTION

	history.back()
	Takes you back in the history, like the browser's back button

	history.forward()
	Takes you forward in the history, like the browser's forward button

	history.go()
	Takes you to a specific page in the history. It is an index number, starting at 0. .go(1) is like clicking the forward button and .go(-1) is like clicking back

	history.pushState()
	Adds an item to the history stack
(Clicking on a relative link in a page usually triggers a hashchange event, rather than load, but no event fires if you use pushState() and the url contains a hash)

	history.replaceState()
	Does the same as pushState() except it modifies the current history entry

	PROPERTY
	DESCRIPTION

	length
	Tells you how many items are in the history object

	EVENT
	DESCRIPTION

	window.onpopstate
	Used to handle the user moving backwards or forwards

WORKING WITH HISTORY

1. The loadContent() function uses jQuery's .load() method (see p390) to load content into the page.

2. If a link is clicked on, an anonymous function runs.

3. The page to load is held in a variable called href.

4. The current links are updated.

5. The loadContent() function is called (see step 1).

6. The pushState() method of the history object updates the history stack.

[image: image]

[image: image]

7. When the user clicks backwards or forwards, the onpopstate event fires. This is used to trigger an anonymous function.

8. The browser's location bar will display the corresponding page from the history stack, so location.pathname is used to obtain the path for the page that needs to be loaded.

9. The loadContent() function (in step 1) is called again, to retrieve the specified page.

10. The file name is retrieved so that the current link can be updated.

SCRIPTS WITH APIS

There are hundreds of scripts available for free on the web. Many have an API you need to use to get them to work for you.

SCRIPT APIS

Lots of developers share their scripts through a range of websites. Some are relatively simple scripts with a single purpose (such as sliders, lightboxes, and table sorters). Others are far more complicated and can be used for a range of purposes (such as jQuery).

In this section, you will meet two different types of scripts whose code you can make use of when you have learned their API:

	A set of jQuery plugins known as jQuery UI.

	A script that makes it easier to create web apps called AngularJS.

JQUERY PLUGINS

Many developers have written code that adds extra functionality to jQuery. These scripts add methods to extend the jQuery object, which are known as jQuery plugins.

When you use these plugins, first you include the jQuery script, followed by the plugin script. Then, when you select elements (as you do with standard in jQuery methods), the plugin allows you to apply new methods that it has defined to that selection, offering new functionality that was not in the original jQuery script.

ANGULAR

Angular.js is another JavaScript library, but it is very different from jQuery. Its purpose is to make it easier to develop web applications.

One of the most striking things is that it allows you to access and update the contents of a page without writing code to handle events, select elements, or update the content of an element. We only have space to provide a very basic introduction to Angular in this chapter, but it does help demonstrate the variety of scripts available.

THIRD-PARTY SCRIPTS

Before writing your own script it can pay to check if someone else has already done the hard work for you (there is no point reinventing the wheel).

It is always a good idea to check:

	Whether it has been updated fairly recently

	That the JavaScript is separate from the HTML

	Reviews of the script if they are available

This helps to ensure that the script uses modern practices and is still being updated. It is also worth noting that the instructions for using a script are not always called an API.

JQUERY UI

The jQuery foundation maintain its own set of jQuery plugins called jQuery UI. They help create user interfaces.

WHAT JQUERY UI DOES

jQuery UI is a suite of jQuery plugins that extends jQuery with a set of methods to create:

	Widgets (such as accordions and tabs)

	Effects (that make elements appear and disappear)

	Interactions (such as drag and drop functionality)

jQuery UI not only provides JavaScript you can use, but it also comes with a set of themes that help control how the plugins look on the page.

If you want fine-grained control over how the jQuery plugins look in the browser, you can also use the theme roller, which gives you more precise control over the appearance of the elements.

HOW TO ACCESS IT

To use jQuery UI, first you must include jQuery in your page; then you must include the jQuery UI script (after the jQuery file).

Versions of jQuery UI are available on the same CDNs as the main jQuery file. But, if you only need part of the jQuery UI functionality, you can just download the relevant parts from the jqueryui.com website. This creates a smaller JavaScript file, which in turn makes the script faster to download.

SYNTAX

Once you have included the jQuery and jQuery UI scripts in the page, the syntax is very similar to using other jQuery methods. You create a jQuery selection and then call a method that will be defined in the plugin.

As you will see, the jQuery UI documentation not only has to explain the JavaScript methods and properties it uses, but also how to structure your HTML if you want to use many of its widgets and interactions.

[image: image]

JQUERY UI ACCORDION

[image: image]

[image: image]

Creating an accordion with jQuery UI is very simple. You only need to know:

	How to structure your HTML

	What element(s) should be used in the jQuery selector

	The jQuery UI method to call

1. In this example, the HTML for an accordion is contained within a <div> element (its id attribute has a value of prizes, which will be used in the script). Each panel of the accordion has:

2. An <h3> element for the clickable heading

3. A <div> element for the content of that panel

4. Before the closing </body> tag the jQuery and jQuery UI scripts are both included in the page.

5. Finally, you can see a third <script> element containing an anonymous function that runs when the page has loaded.

6. Inside that function, a standard jQuery selector picks the containing <div> element that contains the accordion (using the value of its id attribute). The accordion functionality is triggered by calling the .accordion() method on that selection.

You do not need to know how the jQuery plugin achieves this, as long as you know how to:

	Structure your HTML

	Create the jQuery selection

	Call the new method defined in the jQuery plugin

Note: On a live site, the JavaScript should be kept in an external file to maintain a separation of concerns. It is shown here for convenience and to show how little work needs to be done to achieve this effect.

JQUERY UI TABS

[image: image]

[image: image]

The tabs are a similar concept to the accordion.

1. They are kept in a containing <div> element that will be used in the jQuery selector. The content, however, is slightly different.

2. The tabs are created using an unordered list. The link inside each list item points to a <div> element lower down the page that holds content for that tab.

3. Note that the id attributes on the <div> elements must match the value of the href attribute on the tabs.

Once you have included jQuery and jQuery UI in the page, there is a third script tag with an anonymous function that runs when the DOM has loaded.

4. A jQuery selector picks the element whose id attribute has a value of prizes (this is the containing element for the tabs). Then it calls the .tabs() method is called on that selection.

This structure is common in most jQuery plugins:

1. jQuery is loaded.

2. The plugin is loaded.

3. An anonymous function runs when the page is ready.

The anonymous function will create a jQuery selection and applies the method defined in the jQuery plugin to that selection. Some methods will also require parameters in order to do their job.

On a live site, the JavaScript should be kept in an external file to maintain a separation of concerns, but it is shown here for convenience and to show how little work needs to be done to achieve this effect.

JQUERY UI FORM

[image: image]

[image: image]

jQuery UI introduces several form controls that make it easier for people to enter data into forms. This example demonstrates two of them:

Slider input: This allows people to select a numeric value using a draggable slider. This slider has two handles that allow the user to set a range between two numbers. As you can see on the right, the HTML for the slider is made up of two components:

1. A normal label and text input that would allow users to enter a number.

2. An extra <div> element used to hold the slider that you see on the page.

Date picker: This allows people to pick a date from a pop-up calendar, which helps ensure that users provide the date in the correct format that you need.

3. It is just a text input, and does not need any additional markup.

Before the closing </body> tag, you can see that there are three <script> elements: the first is the jQuery script, the second is jQuery UI, and the third contains the instructions to setup these two form controls (see right-hand page). If JavaScript is not enabled, these controls look like normal form controls without the jQuery's enhancements.

Most jQuery scripts live within the .ready() function or its shortcut (used on the next page). As you saw in Chapter 7, this ensures that the script only runs when the DOM has loaded.

If you include more than one jQuery plugin, each of which uses the .ready() method, you do not repeat the function - you combine the code from inside both functions into the one.

1. The JavaScript is contained within the shortcut for the jQuery .ready() method. It contains the setup instructions for both of the form controls.

2. To turn a text input into a date picker, all you need to do is select the text input and then call the datepicker() method on that selection.

3. Cache the inputs for price.

4. The slider uses an object literal to set the properties of the .slider() method (see below).

[image: image]

5. When the form loads, the text input that shows the amount as text needs to know the initial range for the slider. The value of that input is made up of:

a) A dollar sign: $ followed by the lower range value.

b) A dash and dollar sign: - $ followed by the higher range value.

The script is called form-init.js. Programmers often use init as a shorthand for initialize; and this script is used to set an initial state for the form.

When a jQuery plugin has settings that vary each time it is used, it is common to pass the settings in an object literal. You can see this with the .slider() method; it is passed several parameters and a method:

	PROPERTY
	DESCRIPTION

	range
	A Boolean to give the slider two handles
(not just a single value)

	min
	The minimum value for the slider

	max
	The maximum value for the slider

	values
	An array containing two values to specify an initial range in the slider when the page first loads

	METHOD
	DESCRIPTION

	slider()
	Updates the text input which shows the text values for the slider (the documentation shows examples for this)

ANGULARJS

AngularJS is a framework that makes it easier to create web apps. In particular, it assists in creating apps that write, read, update, and delete data in a database on a server.

Angular is based on a software development approach called model view controller or MVC. (It is actually variant on MVC, not strict MVC). To use Angular, first you include the angular.js script in your page, and then it makes a set of tools available to you (just like jQuery does).

The point of MVC is that it separates out parts of a web application, in the same way that front-end developers should separate content (HTML), presentation (CSS), and behavior (JavaScript).

We do not have space to go into Angular in detail, but it introduces another example of a very different script with an API, as well as concepts such as the MVC approach, templating, and data binding. You can download Angular and view the full API at http://angularjs.org.

[image: image]

The View is what the user sees. In a web app, it is the HTML page. Angular lets you create templates with spaces for particular types of content. If the user changes values in the view, commands (1) are sent to up the chain to update the model.
There can be different views of the same data, e.g., users and administrators.

This ViewModel (or controller) will update the view if there are changes to the model, and will update the model if there are changes in the view. The task of keeping data synchronized between the two is known as data binding (2).
For example, if a form in the view is updated, it reflects the changes and updates the server.

In a web app, the Model is usually stored in the database, and managed by server-side code that can access and update the model.

When the model has been updated, change notifications (3) are sent to the ViewModel. This info can be passed onto the View to keep it updated.

USING ANGULAR

[image: image]

[image: image]

This example takes the content of the <input> and <textarea> elements and writes it into another part of the page (where you can see the double curly braces in the HTML file).

First, include the Angular script in your page. You can store it locally or use the version on Google's CDN. Until you understand more about Angular, place it in the <head> element.

Note the new markup in the HTML. There are attributes that start with ng- (which is short for Angular). These are called directives. There is one on the opening <html> tag and one on each of the form elements. The value of the ng-model attribute on the text inputs matches the values inside the double curly braces. Angular automatically takes the content of the form elements and writes it into the page where the corresponding curly braces are.

No more JavaScript is needed to achieve this, whereas in jQuery, this would involve four steps:

1. Writing an event handler for the form elements

2. Using that to trigger code to get the elements’ content

3. Selecting new element nodes that represent the postcard

4. Writing the data into the page

VIEW & VIEWMODEL

Below, look at the angular-controller.js file. It uses a a constructor function to create an object called BasketCtrl. This object is known as a controller or ViewModel. It is passed another object called $scope as an argument. Properties of the $scope object are set in the constructor function.

1. Note the object's name (BasketCtrl) matches the value of the ng-controller attribute on the opening <table> tag. In this example, there is no database, so the controller will also act as the model: sharing data with the view.

The HTML file (the view) gets its data from the BasketCtrl object in the JavaScript controller. In the HTML, note how the names in curly braces, e.g., {{ cost }} and {{ qty }}, match the properties of the $scope object in the JavaScript.

The HTML file is now called a template because it will display whatever data is in the corresponding controller. The names in curly braces are like variables that match the data in the object. If the JavaScript object had different values, the HTML would show those values.

[image: image]

[image: image]

DATA BINDING & SCOPE

2. It is also possible to evaluate expressions inside the curly braces. In step 3, the subtotal is calculated in the template. This is then formatted as a currency. Furthermore, if you update the quantity in the form, the underlying data model (in the JavaScript object) is updated along with the subtotal. Try updating the values in the JavaScript file, then refreshing the HTML to see the connection. This is an example of something programmers call data binding; the data in the JavaScript file is bound to the HTML and vice-versa. If the ViewModel changes, the view updates. If the view changes, the ViewModel updates.

As this shows, Angular is particularly helpful when you load data from a separate file into the view. A page can have multiple controllers, each of which has its own scope. In the HTML, the ng-controller attribute is used on an element to define the scope of that controller. This is similar to variable scope. For example, a different element might have a different controller (e.g., StoreCtrl), and both controllers would be able to have a property called description. Because the scope is only within that element, each controller's description property would only be used within that controller's scope.

[image: image]

GETTING EXTERNAL DATA

Here, the controller (the JavaScript file) collects the model (the JSON data) from a file on the server. (In a web app, the JSON data would usually come from a database.) This updates the view in the HTML.

To collect the data, Angular uses what it calls the $http service. Inside the angular.js file, the code uses the XMLHttpRequest object to make Ajax requests (like those you saw in Chapter 8).

1. The path to the JSON file is relative to the HTML template, not the JavaScript file (even though the path is written in the JavaScript).

Just like jQuery's .ajax() method, the $http service has several shortcuts to make it easier to create some requests. To fetch data it uses get(), post(), and jsonp(); to delete data it uses delete(); and to create new records: put(). This example uses get().

[image: image]

[image: image]

[image: image]

LOOP THROUGH RESULTS

2. If the request successfully fetches data, the code in the success() function runs. In this case, if it is successful the $scope object is passed the data from the JSON object. This allows the template to display the data.

3. If it fails, the error() function is run instead. This would to show an error message to users. Here it writes to the console (which you meet on p464).

4. The JSON data contains several objects, each of which is displayed in the page. Note, there is no JavaScript loop written in the controller. Instead, the HTML template (or view) is where the loop occurs.

5. The ng-repeat directive on the opening <tr> tag indicates that the table row should act like a loop. It should go through each object in the sessions array and create a new table row for each of them.

[image: image]

In the HTML, the value of the ng-repeat directive is: session in sessions

	sessions matches the JSON data; it corresponds with the object name.

	session is the identifier used in the template to indicate the name of each individual object within the sessions object.

If the ng-repeat attribute used different names than session, the value in the curly braces in the HTML would have to change to reflect that name. For example, if it said lecture in sessions, then the curly braces would change to reflect that:
{{ lecture.time }}, {{ lecture.title }}, etc.

This is just a very high-level introduction to Angular, but does demonstrate some popular techniques when using JavaScript to develop web apps, such as:

	The use of templates that take content from JavaScript and update the HTML page.

	The rise in MVC-influenced frameworks for web-based application development.

	The use of libraries to save developers having to write so much code.

For more on Angular, see http://angularjs.org

Another very popular alternative is Backbone http://backbonejs.org

PLATFORM APIS

Many large websites expose their APIs that allow you to access and update the data on their sites, including Facebook, Google, and Twitter.

WHAT YOU CAN DO

Each site offers different capabilities, for example:

	Facebook offers features such as allowing people to like sites or add comments and discussion to the bottom of a web page.

	Google Maps lets you to include various types of maps in your pages.

	Twitter allows you to display your latest tweets on your web pages or send new tweets.

By exposing some of the functionality of their platforms these companies are advertising their sites and encouraging people back to them. This in turn increase their total amount of activity (and their revenue).

Be aware that companies can change either how you access APIs or change what you are allowed to use the APIs for.

HOW TO ACCESS

On the web, you can access several of these platform APIs by including a script they provide in your page. That script will typically create an object (just like the jQuery script adds a jQuery object). In turn, that object will have methods and properties that you can use to access (and sometimes update) the data on that platform.

Most sites that offer an API will also provide documentation that explains how to use its objects, methods, and properties (along with some basic examples).

Some of the larger sites provide pages where you can get code that you can copy and paste into your site without even needing to understand the API.

Facebook, Google, and Twitter have all made changes to both how you access their APIs and what you can use them for.

THE SYNTAX

The syntax of an API will vary from platform to platform. But they will be documented using tables of objects, methods, and properties like those you saw in the first section of this chapter. You may also see sample code that demonstrates tasks people commonly use the API for (like the examples you have seen in this chapter).

Some platforms offer APIs in multiple languages, so that you can interact with them using server-side languages such as PHP / C# as well as using JavaScript.

In the rest of this chapter we will be focusing on the Google Maps API as an example of what you can do with platform APIs.

If you work on a site for a client, make them aware that APIs can change (and that could result in recoding pages that use them).

GOOGLE MAPS API

Currently, one of the most popular APIs in use on the web is the Google Maps API, which allows you to add maps to web pages.

WHAT IT DOES

The Google Maps JavaScript API allows you to show Google maps in your web pages. It also allows you to customize the look of the maps and what information is shown on them.

You may find it helpful to look at the documentation for the Google Maps API while going through this example. It will show you other things that you can do with the API. https://developers.google.com/maps/

WHAT YOU'LL SEE

We only have space to show a few of the features of the Google Maps API, as it is very powerful and contains a lot of advanced features. But the examples in this chapter will get you used to working with its API.

You will start by seeing how to add a map to your web pages, then you will see how to change the controls, and finally how to change the colors and add markers on top of the map.

[image: image]

API KEY

Some APIs require that you register and request an API key in order to get data from their servers. An API key is a set of letters and numbers that uniquely identify you to the application so the owners of the site can track how much you use the API and what you use it for.

At the time of writing, Google allowed websites to call their maps API 25,000 times per day for free without an API key, but sites that consistently make more requests are required to use a key and pay for the service.

If you run a busy site, or the map is part of the core application, it is good practice to use an API key with Google Maps because:

	You can see how many times your site requests the API

	Google can contact you if they change terms of service or charge for use

To get a Google API key, see https://cloud.google.com/console

BASIC MAP SETTINGS

Once you have included the Google Maps script in your page, you can use their maps object. It lets you display Google maps in your pages.

CREATING A MAP

The maps object is stored within an object called google. This creates scope for all Google objects.

To add a map to your page, you create a new map object using a constructor: Map(). The constructor is part of the maps object, and it has two parameters:

	The element into which you want the map drawn

	A set of map options that control how it is displayed given using object literal notation

Zoom level is typically set using a number between 0 (the full earth) and 16. (Some cities can go higher.)

[image: image]

MAP OPTIONS

The settings that control how the map should look are stored inside another JavaScript object called mapOptions. It is created as an object literal before you call the Map() constructor. In the JavaScript on the right, you can see that the mapOptions object uses three pieces of data:

	Longitude and latitude of the center of the map

	The zoom level for the map

	The type of map data you want to show

The images that make up the map are called tiles. Four map types each show a different style of map.

[image: image]

A BASIC GOOGLE MAP

[image: image]

[image: image]

[image: image]

1. Starting at the bottom of the script, when the page has loaded, the onload event will call the loadScript() function.

2. loadScript() creates a <script> element to load the Google Maps API. When it has loaded, it calls init(), to initialize the map.

3. init() loads the map into the HTML page. First it creates a mapOptions object with three properties.

4. Then it uses the Map() constructor to create a map and draw the map into the page. The constructor takes two parameters:

	The element that the map will appear inside

	The mapOptions object

CHANGING CONTROLS

[image: image]

To show or hide the controls, use the control name followed by a value of true (to show it) or false (to hide it). Although Google Maps tries to prevent overlaps, use judgement to position controls on your map.

[image: image]

GOOGLE MAP WITH CUSTOM CONTROLS

APPEARANCE OF CONTROLS

To alter the appearance and position of map controls, you add to the mapOptions object.

1. To show or hide a control, the key is the name of the control, and the value is a Boolean (true will show the control; false will hide it).

POSITION OF THE CONTROL

2. Each control has its own options object used to control its style and position. The word Options follows the control name, e.g., zoomControlOptions. Styles are discussed below. The diagram on the left-hand page shows options for the position property.

[image: image]

STYLE OF MAP CONTROLS

3. You can change the appearance of the zoom and map type controls using the following options:

	zoomControlStyle:

	SMALL
	Small +/- buttons

	LARGE
	Vertical slider

	DEFAULT
	The default for that device

	MapTypeControlStyle:

	HORIZONTAL_BAR
	Buttons side-by-side

	DROPDOWN_MENU
	Dropdown select box

	DEFAULT
	The default for that device

STYLING A GOOGLE MAP

To style the map you need to specify three things:

	featureTypes: the map feature you want to style: e.g., roads, parks, waterways, public transport.

	elementTypes: the part of that feature you want to style, such as its geometry (shapes) or labels.

	stylers: properties that allow you to adjust the color or visibility of items on the map.

The styles property in the mapOptions object sets the map style. It's value is an array of objects. Each object affects a different feature fo the map.

The first stylers property alters the colors of the map as a whole. It, too, contains an array of objects.

	hue property adjusts color, its value is a hex code

	lightness or saturation can take a value from -100 to 100

Then each feature that shows up on the map can have its own object, and its own stylers property. In it, the visibility property can have three values:

	on to show the feature type

	off to hide it

	simplified to show a more basic version

[image: image]

ADDING MARKERS

Here you can see how to add a marker to a map. The map has been created, and its name is venueMap.

1. Create a LatLng object to store the position of the marker using object constructor syntax. Below that object is called pinLocation.

2. The Marker() constructor creates a marker object. It has one parameter: an object that contains settings using object literal notation.

The settings object contains three properties:

3. position is the object storing the location of the marker (pinLocation).

4. map is the map that the marker should be added to (because a page can have more than one map).

5. icon is the path to the image that should be displayed as the marker on the map (this should be provided relative to the HTML page).

[image: image]

[image: image]

SUMMARY

APIS

	APIs are used in browsers, scripts, and by websites that share functionality with other programs or sites.

	APIs let you write code that will make a request, asking another program or script to do something.

	APIs also specify the format in which the response will be given (so that the response can be understood).

	To use an API on your website, you will need to include a script in the relevant web pages.

	An API's documentation will usually feature tables of objects, methods, and properties.

	Providing you know how to create an object and call its methods, access its properties, and respond to its events, you should be able to learn any JavaScript API.

 10

ERROR HANDLING & DEBUGGING

JavaScript can be hard to learn and everyone makes mistakes when writing it. This chapter will help you learn how to find the errors in your code. It will also teach you how to write scripts that deal with potential errors gracefully.

When you are writing JavaScript, do not expect to write it perfectly the first time. Programming is like problem solving: you are given a puzzle and not only do you have to solve it, but you also need to create the instructions that allow the computer to solve it, too.

When writing a long script, nobody gets everything right in their first attempt. The error messages that a browser gives look cryptic at first, but they can help you determine what went wrong in your JavaScript and how to fix it. In this chapter you will learn about:

THE CONSOLE & DEV TOOLS

Tools built into the browser that help you hunt for errors.

COMMON PROBLEMS

Common sources of errors, and how to solve them.

HANDLING ERRORS

How code can deal with potential errors gracefully.

[image: image]

ORDER OF EXECUTION

To find the source of an error, it helps to know how scripts are processed. The order in which statements are executed can be complex; some tasks cannot complete until another statement or function has been run:

[image: image]

This script above creates a greeting message, then writes it to an alert box (see right-hand page). In order to create that greeting, two functions are used: greetUser() and getName().

You might think that the order of execution (the order in which statements are processed) would be as numbered: one through to four. However, it is a little more complicated.

To complete step one, the interpreter needs the results of the functions in steps two and three (because the message contains values returned by those functions). The order of execution is more like this: 1, 2, 3, 2, 1, 4.

1. The greeting variable gets its value from the greetUser() function.

2. greetUser() creates the message by combining the string ‘Hello ’ with the result of getName().

3. getName() returns the name to greetUser().

2. greetUser() now knows the name, and combines it with the string. It then returns the message to the statement that called it in step 1.

1. The value of the greeting is stored in memory.

4. This greeting variable is written to an alert box.

EXECUTION CONTEXTS

The JavaScript interpreter uses the concept of execution contexts. There is one global execution context; plus, each function creates a new new execution context. They correspond to variable scope.

[image: image]

EXECUTION CONTEXT

Every statement in a script lives in one of three execution contexts:

[image: image] GLOBAL CONTEXT

Code that is in the script, but not in a function. There is only one global context in any page.

[image: image] FUNCTION CONTEXT

Code that is being run within a function. Each function has its own function context.

[image: image] EVAL CONTEXT (NOT SHOWN)

Text is executed like code in an internal function called eval() (which is not covered in this book).

VARIABLE SCOPE

The first two execution contexts correspond with the notion of scope (which you met on p98):

[image: image] GLOBAL SCOPE

If a variable is declared outside a function, it can be used anywhere because it has global scope. If you do not use the var keyword when creating a variable, it is placed in global scope.

[image: image] FUNCTION-LEVEL SCOPE

When a variable is declared within a function, it can only be used within that function. This is because it has function-level scope.

THE STACK

The JavaScript interpreter processes one line of code at a time. When a statement needs data from another function, it stacks (or piles) the new function on top of the current task.

When a statement has to call some other code in order to do its job, the new task goes to the top of the pile of things to do.

Once the new task has been performed, the interpreter can go back to the task in hand.

Each time a new item is added to the stack, it creates a new execution context.

Variables defined in a function (or execution context) are only available in that function.

If a function gets called a second time, the variables can have different values.

You can see how the code that you have been looking at so far in this chapter will end up with tasks being stacked up on each other in the diagram to the right.

(The code is shown at the top of the right-hand page.)

[image: image]

EXECUTION CONTEXT & HOISTING

Each time a script enters a new execution context, there are two phases of activity:

1: PREPARE

	The new scope is created

	Variables, functions, and arguments are created

	The value of the this keyword is determined

2: EXECUTE

	Now it can assign values to variables

	Reference functions and run their code

	Execute statements

Understanding that these two phases happen helps with understanding a concept called hoisting. You may have seen that you can:

	Call functions before they have been declared (if they were created using function declarations - not function expressions, see p96)

	Assign a value to a variable that has not yet been declared

This is because any variables and functions within each execution context are created before they are executed.

The preparation phase is often described as taking all of the variables and functions and hoisting them to the top of the execution context. Or you can think of them as having been prepared.

Each execution context also creates its own variables object. This object contains details of all of the variables, functions, and parameters for that execution context.

You may expect the following to fail, because greetUser() is called before it has been defined:

var greeting = greetUser();
function greetUser() {
 // Create greeting
}

It works because the function and first statement are in the same execution context, so it is treated like this:

function greetUser() {
 // Create greeting
}
var greeting = greetUser();

The following would would fail because greetUser() is created within the getName() function's context:

var greeting = greetUser();
function getName() {
 function greetUser() {
 // Create greeting
 }
 // Return name with greeting
}

UNDERSTANDING SCOPE

In the interpreter, each execution context has its own variables object. It holds the variables, functions, and parameters available within it. Each execution context can also access its parent's variables object.

Functions in JavaScript are said to have lexical scope. They are linked to the object they were defined within. So, for each execution context, the scope is the current execution context's variables object, plus the variables object for each parent execution context.

Imagine that each function is a nesting doll. The children can ask the parents for information in their variables. But the parents cannot get variables from their children. Each child will get the same answer from the same parent.

[image: image]

If a variable is not found in the variables object for the current execution context, it can look in the variables object of the parent execution context. But it is worth knowing that looking further up the stack can affect performance, so ideally you create variables inside the functions that use them.

If you look at the example on the left, the inner functions can access the outer functions and their variables. For example, the greetUser() function can access the time variable that was declared in the outer greeting() function.

Each time a function is called, it gets its own execution context and variables object.

Each time an outer function calls an inner function, the inner function can have a new variables object. But variables in the outer function remain the same.

Note: you cannot access this variables object from your code; it is something the interpreter is creating and using behind the scenes. But understanding what goes on helps you understand scope.

UNDERSTANDING ERRORS

If a JavaScript statement generates an error, then it throws an exception. At that point, the interpreter stops and looks for exception-handling code.

If you are anticipating that something in your code may cause an error, you can use a set of statements to handle the error (you meet them on p480). This is important because if the error is not handled, the script will just stop processing and the user will not know why. So exception-handling code should inform users when there is a problem.

[image: image]

Whenever the interpreter comes across an error, it will look for error-handling code. In the diagram below, the code has the same structure as the code you saw in the diagrams at the start of the chapter. The statement at step 1 uses the function in step 2, which in turn uses the function in step 3. Imagine that there has been an error at step 3.

When an exception is thrown, the interpreter stops and checks the current execution context for exception-handling code. So if the error occurs in the getName() function (3), the interpreter starts to look for error handling code in that function.

If an error happens in a function and the function does not have an exception handler, the interpreter goes to the line of code that called the function. In this case, the getName() function was called by greetUser(), so the interpreter looks for exception-handling code in the greetUser() function (2). If none is found, it continues to the next level, checking to see if there is code to handle the error in that execution context. It can continue until it reaches the global context, where it would have to it terminate the script, and create an Error object.

So it is going through the stack looking for error-handling code until it gets to the global context. If there is still no error handler, the script stops running and the Error object is created.

ERROR OBJECTS

Error objects can help you find where your mistakes are and browsers have tools to help you read them.

When an Error object is created, it will contain the following properties:

	PROPERTY
	DESCRIPTION

	name
	Type of execution

	message
	Description

	fileNumber
	Name of the JavaScript file

	lineNumber
	Line number of error

When there is an error, you can see all of this information in the JavaScript console / Error console of the browser.

You will learn more about the console on p464, but you can see an example of the console in Chrome in the screen shot below.

There are seven types of built-in error objects in JavaScript. You'll see them on the next two pages:

	OBJECT
	DESCRIPTION

	Error
	Generic error - the other errors are all based upon this error

	SyntaxError
	Syntax has not been followed

	ReferenceError
	Tried to reference a variable that is not declared/within scope

	TypeError
	An unexpected data type that cannot be coerced

	RangeError
	Numbers not in acceptable range

	URIError
	encodeURI(), decodeURI(), and similar methods used incorrectly

	EvalError
	eval() function used incorrectly

[image: image]

1. In the red on the left, you can see this is a SyntaxError. An unexpected character was found.

2. On the right, you can see that the error happened in a file called errors.js on line 4.

ERROR OBJECTS CONTINUED

Please note that these error messages are from the Chrome browser. Other browsers' error messages may vary.

SyntaxError

SYNTAX IS NOT CORRECT

This is caused by incorrect use of the rules of the language. It is often the result of a simple typo.

[image: image]

ReferenceError

VARIABLE DOES NOT EXIST

This is caused by a variable that is not declared or is out of scope.

[image: image]

EvalError

INCORRECT USE OF eval() FUNCTION

The eval() function evaluates text through the interpreter and runs it as code (it is not discussed in this book). It is rare that you would see this type of error, as browsers often throw other errors when they are supposed to throw an EvalError.

URIError

INCORRECT USE OF URI FUNCTIONS

If these characters are not escaped in URIs, they will cause an error: / ? & # : ;

[image: image]

These two pages show JavaScript's seven different types of error objects and some common examples of the kinds of errors you are likely to see. As you can tell, the errors shown by the browsers can be rather cryptic.

TypeError

VALUE IS UNEXPECTED DATA TYPE

This is often caused by trying to use an object or method that does not exist.

[image: image]

RangeError

NUMBER OUTSIDE OF RANGE

If you call a function using numbers outside of its accepted range.

[image: image]

Error

GENERIC ERROR OBJECT

The generic Error object is the template (or prototype) from which all other error objects are created.

NaN

NOT AN ERROR

Note: If you perform a mathematical operation using a value that is not a number, you end up with the value of NaN, not a type error.

[image: image]

HOW TO DEAL WITH ERRORS

Now that you know what an error is and how the browser treats them, there are two things you can do with the errors.

1: DEBUG THE SCRIPT TO FIX ERRORS

If you come across an error while writing a script (or when someone reports a bug), you will need to debug the code, track down the source of the error, and fix it.

You will find that the developer tools available in every major modern browser will help you with this task. In this chapter, you will learn about the developer tools in Chrome and Firefox. (The tools in Chrome are identical to those in Opera.)

IE and Safari also have their own tools (but there is not space to cover them all).

2: HANDLE ERRORS GRACEFULLY

You can handle errors gracefully using try, catch, throw, and finally statements.

Sometimes, an error may occur in the script for a reason beyond your control. For example, you might request data from a third party, and their server may not respond. In such cases, it is particularly important to write error-handling code.

In the latter part of the chapter, you will learn how to gracefully check whether something will work, and offer an alternative option if it fails.

A DEBUGGING WORKFLOW

Debugging is about deduction: eliminating potential causes of an error. Here is a workflow for techniques you will meet over the next 20 pages. Try to narrow down where the problem might be, then look for clues.

WHERE IS THE PROBLEM?

First, should try to can narrow down the area where the problem seems to be. In a long script, this is especially important.

1. Look at the error message, it tells you:

	The relevant script that caused the problem.

	The line number where it became a problem for the interpreter. (As you will see, the cause of the error may be earlier in a script; but this is the point at which the script could not continue.)

	The type of error (although the underlying cause of the error may be different).

2. Check how far the script is running.
Use tools to write messages to the console to tell how far your script has executed.

3. Use breakpoints where things are going wrong.
They let you pause execution and inspect the values that are stored in variables.

If you are stuck on an error, many programmers suggest that you try to describe the situation (talking out loud) to another programmer. Explain what should be happening and where the error appears to be happening. This seems to be an effective way of finding errors in all programming languages. (If nobody else is available, try describing it to yourself.)

WHAT EXACTLY IS THE PROBLEM?

Once you think that you might know the rough area in which your problem is located, you can then try to find the actual line of code that is causing the error.

1. When you have set breakpoints, you can see if the variables around them have the values you would expect them to. If not, look earlier in the script.

2. Break down / break out parts of the code to test smaller pieces of the functionality.

	Write values of variables into the console.

	Call functions from the console to check if they are returning what you would expect them to.

	Check if objects exist and have the methods / properties that you think they do.

3. Check the number of parameters for a function, or the number of items in an array.

And be prepared to repeat the whole process if the above solved one error just to uncover another…

If the problem is hard to find, it is easy to lose track of what you have and have not tested. Therefore, when you start debugging, keep notes of what you have tested and what the result was. No matter how stressful the circumstances are, if you can, stay calm and methodical, the problem will feel less overwhelming and you will solve it faster.

BROWSER DEV TOOLS & JAVASCRIPT CONSOLE

The JavaScript console will tell you when there is a problem with a script, where to look for the problem, and what kind of issue it seems to be.

These two pages show instructions for opening the console in all of the main browsers (but the rest of this chapter will focus on Chrome and Firefox).

Browser manufacturers occasionally change how to access these tools. If they are not where stated, search the browser help files for “console.”

CHROME / OPERA

[image: image]

On a PC, press the F12 key or:

1. Go to the options menu (or three line menu icon)

2. Select Tools or More tools.

3. Select JavaScript Console or Developer Tools On a Mac press Alt + Cmd + J. Or:

4. Go to the View menu.

5. Select Developer.

6. Open the JavaScript Console or Developer Tools option and select Console.

INTERNET EXPLORER

[image: image]

Press the F12 key or:

1. Go to the settings menu in the top-right.

2. Select developer tools.

The JavaScript console is just one of several developer tools that are found in all modern browsers.

When you are debugging errors, it can help if you look at the error in more than one browser as they can show you different error messages.

If you open the errors.html file from the sample code in your browser, and then open the console, you will see an error is displayed.

FIREFOX

[image: image]

On a PC, press Ctrl + Shift + K or:

1. Go to the Firefox menu.

2. Select Web Developer.

3. Open the Web Console.
On a Mac press Alt + Cmd + K. Or:

1. Go to the Tools menu.

2. Select Web Developer.

3. Open the Web Console.

SAFARI

[image: image]

Press Alt + Cmd + C or:

1. Go to the Develop menu.

2. Select Show Error Console.
If the Develop menu is not shown:

1. Go to the Safari menu.

2. Select Preferences.

3. Select Advanced.

4. Check the box that says “Show Develop menu in menu bar.”

HOW TO LOOK AT ERRORS IN CHROME

The console will show you when there is an error in your JavaScript. It also displays the line where it became a problem for the interpreter.

[image: image]

1. The Console option is selected.

2. The type of error and the error message are shown in red.

3. The file name and the line number are shown on the right-hand side of the console.

Note that the line number does not always indicate where the error is. Rather, it is where the interpreter noticed there was a problem with the code.

If the error stops JavaScript from executing, the console will show only one error - there may be more to troubleshoot once this error is fixed.

HOW TO LOOK AT ERRORS IN FIREFOX

[image: image]

1. The Console option is selected.

2. Only the JavaScript and Logging options need to be turned on. The Net, CSS, and Security options show other information.

3. The type of error and the error message are shown on the left.

4. On the right-hand side of the console, you can see the name of the JavaScript file and the line number of the error.

Note that when debugging any JavaScript code that has been minified, it will be easier to understand if you expand it first.

TYPING IN THE CONSOLE IN CHROME

You can also just type code into the console and it will show you a result.

[image: image]

Above, you can see an example of JavaScript being written straight into the console. This is a quick and handy way to test your code.

Each time you write a line, the interpreter may respond. Here, it is writing out the value of each variable that has been created.

Any variable that you create in the console will be remembered until you clear the console.

1. In Chrome, the no-entry sign is used to clear the console.

TYPING IN THE CONSOLE IN FIREFOX

[image: image]

1. In Firefox, the Clear button will clear the contents of the console.

This tells the interpreter that it no longer needs to remember the variables you have created.

2. The left and right arrows show which lines you have written, and which are from the interpreter.

WRITING FROM THE SCRIPT TO THE CONSOLE

Browsers that have a console have a console object, which has several methods that your script can use to display data in the console. The object is documented in the Console API.

[image: image]

1. The console.log() method can write data from a script to the console. If you open console-log.html, you will see that a note is written to the console when the page loads.

2. Such notes can tell you how far a script has run and what values it has received. In this example, the blur event causes the value entered into a text input to be logged in the console.

3. Writing out variables lets you see what values the interpreter holds for them. In this example, the console will write out the values of each variable when the form is submitted.

LOGGING DATA TO THE CONSOLE

This example shows several uses of the console.log() method.

1. The first line is used to indicate the script is running.

2. Next an event handler waits for the user leaving a text input, and logs the value that they entered into that form field.

When the user submits the form, four values are displayed:

3. That the user clicked submit

4. The value in the width input

5. The value in the height input

6. The value of the area variable

They help check that you are getting the values you expect.

The console.log() method can write several values to the console at the same time, each separated by a comma, as shown when displaying the height (5).

You should always remove this kind of error handling code from your script before you use it on a live site.

[image: image]

MORE CONSOLE METHODS

To differentiate between the types of messages you write to the console, you can use three different methods. They use various colors and icons to distinguish them.

1. console.info() can be used for general information

2. console.warn() can be used for warnings

3. console.error() can be used to hold errors

This technique is particularly helpful to show the nature of the information that you are writing to the screen. (In Firefox, make sure you have the logging option selected.)

[image: image]

[image: image]

GROUPING MESSAGES

1. If you want to write a set of related data to the console, you can use the console.group() method to group the messages together. You can then expand and contract the results.

It has one parameter; the name that you want to use for the group of messages. You can then expand and collapse the contents by clicking next to the group's name as shown below.

2. When you have finished writing out the results for the group, to indicate the end of the group the console.groupEnd() method is used.

[image: image]

[image: image]

WRITING TABULAR DATA

In browsers that support it, the console.table() method lets you output a table showing:

	objects

	arrays that contain other objects or arrays

The example below shows data from the contacts object. It displays the city, telephone number, and country. It is particularly helpful when the data is coming from a third party.

The screen shot below shows the result in Chrome (it looks the same in Opera). Safari will show expanding panels. At the time of writing Firefox and IE did not support this method.

[image: image]

[image: image]

WRITING ON A CONDITION

Using the console.assert() method, you can test if a condition is met, and write to the console only if the expression evaluates to false.

1. Below, when users leave an input, the code checks to see if they entered a value that is 10 or higher. If not, it will write a message to the screen.

2. The second check looks to see if the calculated area is a numeric value. If not, then the user must have entered a value that was not a number.

[image: image]

[image: image]

BREAKPOINTS

You can pause the execution of a script on any line using breakpoints. Then you can check the values stored in variables at that point in time.

CHROME

[image: image]

1. Select the Sources option.

2. Select the script you are working with from the left-hand pane. The code will appear to the right.

3. Find the line number you want to stop on and click on it.

4. When you run the script, it will stop on this line. You can now hover over any variable to see its value at that time in the script's execution.

FIREFOX

[image: image]

1. Select the Debugger option.

2. Select the script you are working with from the left-hand pane. The code will appear to the right.

3. Find the line number you want to stop on and click on it.

4. When you run the script, it will stop on this line. You can now hover over any variable to see its value at that time in the script's execution.

STEPPING THROUGH CODE

If you set multiple breakpoints, you can step through them one-by-one to see where values change and a problem might occur.

When you have set breakpoints, you will see that the debugger lets you step through the code line by line and see the values of variables as your script progresses.

When you are doing this, if the debugger comes across a function, it will move onto the next line after the function. (It does not move to where the function is defined.) This behavior is sometimes called stepping over a function.

If you want to, it is possible to tell the debugger to step into a function to see what is happening inside the function.

Chrome and Firefox both have very similar tools for letting you step through the breakpoints.

[image: image]

1. A pause sign shows until the interpreter comes across a breakpoint. When the interpreter stops on a breakpoint, a play-style button is then shown. This lets you tell the interpreter to resume running the code.

2. Go to the next line of code and step through the lines one-by-one (rather than running them as fast as possible).

3. Step into a function call. The debugger will move to the first line in that function.

4. Step out of a function that you stepped into. The remainder of the function will be executed as the debugger moves to its parent function.

CONDITIONAL BREAKPOINTS

You can indicate that a breakpoint should be triggered only if a condition that you specify is met. The condition can use existing variables.

CHROME

[image: image]

1. Right-click on a line number.

2. Select Add Conditional Breakpoint…

3. Enter a condition into the popup box.

4. When you run the script, it will only stop on this line if the condition is true (e.g., if area is less than 20).

FIREFOX

[image: image]

1. Right-click on a line of code.

2. Select Add conditional breakpoint.

3. Enter a condition into the popup box.

4. When you run the script, it will stop on this line only if the condition is true (e.g., if area is less than 20).

DEBUGGER KEYWORD

You can create a breakpoint in your code using just the debugger keyword. When the developer tools are open, this will automatically create a breakpoint.

You can also place the debugger keyword within a conditional statement so that it only triggers the breakpoint if the condition is met. This is demonstrated in the code below.

It is particularly important to remember to remove these statements before your code goes live as this could stop the page running if a user has developer tools open.

[image: image]

[image: image]

If you have a development server, your debugging code can be placed in conditional statements that check whether it is running on a specific server (and the debugging code only runs if it is on the specified server).

HANDLING EXCEPTIONS

If you know your code might fail, use try, catch, and finally. Each one is given its own code block.

[image: image]

TRY

First, you specify the code that you think might throw an exception within the try block.

If an exception occurs in this section of code, control is automatically passed to the corresponding catch block.

The try clause must be used in this type of error handling code, and it should always have either a catch, finally, or both.

If you use a continue, break, or return keyword inside a try, it will go to the finally option.

CATCH

If the try code block throws an exception, catch steps in with an alternative set of code.

It has one parameter: the error object. Although it is optional, you are not handling the error if you do not catch an error.

The ability to catch an error can be very helpful if there is an issue on a live website.

It lets you tell users that something has gone wrong (rather than not informing them why the site stopped working).

FINALLY

The contents of the finally code block will run either way - whether the try block succeeded or failed.

It even runs if a return keyword is used in the try or catch block. It is sometimes used to clean up after the previous two clauses.

These methods are similar to the .done(), .fail(), and .always() methods in jQuery.

You can nest checks inside each other (place another try inside a catch), but be aware that it can affect performance of a script.

TRY, CATCH, FINALLY

This example displays JSON data to the user. But, imagine that the data is coming from a third party and there have been occasional problems with it that could cause the page to fail.

This script checks if the JSON can be parsed using a try block before trying to display the information to the users.

If the try statement throws an error (because the data cannot be parsed), the code in the catch code block will be run, and the error will not prevent the rest of the script from being executed.

The catch statement creates a message using the name and message properties of the Error object.

The error will be logged to the console, and a friendly message will be shown to the users of the site. You could also send the error message to the server using Ajax so that it could be recorded. Either way, the finally statement adds a link that allows users to refresh the data they are seeing.

[image: image]

[image: image]

THROWING ERRORS

If you know something might cause a problem for your script, you can generate your own errors before the interpreter creates them.

To create your own error, you use the following line:

[image: image]

Being able to throw an error at the time you know there might be a problem can be better than letting that data cause errors further into the script.

If you are working with data from a third party, you may come across problems such as:

	JSON that contains a formatting error

	Numeric data that occasionally has a non-numeric value

	An error from a remote server

	A set of information with one missing value

Bad data might not cause an error in the script straight away, but it could cause a problem later on. In such cases, it helps to report the problem straight away. It can be much harder to find the source of the problem if the data causes an error in a different part of the script.

This creates a new Error object (using the default Error object). The parameter is the message you want associated with the error. This message should be as descriptive as possible.

For example, if a user enters a string when you expect a number, it might not throw an error immediately.

However, if you know that the application will try to use that value in a mathematical operation at some point in the future, you know that it will cause a problem later on.

If you add a number to a string, it will result in a string. If you use a string in any other mathematical calculations, the result would be NaN. In itself, NaN is not an error; it is a value that is not a number.

Therefore, if you throw an error when the user enters a value you cannot use, it prevents issues at some other point in the code. You can create an error that explains the problem, before the user gets further into the script.

THROW ERROR FOR NaN

If you try to use a string in a mathematical operation (other than in addition), you do not get an error, you get a special value called NaN (not a number).

In this example, a try block attempts to calculate the area of a rectangle. If it is given numbers to work with, the code will run. If it does not get numbers, a custom error is thrown and the catch block displays the error.

By checking that the results are numeric, the script can fail at a specific point and you can provide a detailed error about what caused the problem (rather than letting it cause a problem later in the script).

[image: image]

There are two different errors shown: one in the browser window for the users and another in the console for the developers.

This not only catches an error that would not have been thrown otherwise, but it also provides a more descriptive explanation of what caused the error.

Ideally, form validation, which you learn about in Chapter 13, would solve this kind of issue. It is more likely to occur when data comes from a third party.

DEBUGGING TIPS

Here are a selection of practical tips that you can try to use when debugging your scripts.

ANOTHER BROWSER

Some problems are browser-specific. Try the code in another browser to see which ones are causing a problem.

ADD NUMBERS

Write numbers to the console so you can see which the items get logged. It shows how far your code runs before errors stop it.

STRIP IT BACK

Remove parts of code, and strip it down to the minimum you need. You can do this either by removing the code altogether, or by just commenting it out using multi-line comments:
/* Anything between these characters is a comment */

EXPLAINING THE CODE

Programmers often report finding a solution to a problem while explaining the code to someone else.

SEARCH

Stack Overflow is a Q+A site for programmers.

Or use a traditional search engine such as Google, Bing, or DuckDuckGo.

CODE PLAYGROUNDS

If you want to ask about problematic code on a forum, in addition to pasting the code into a post, you could add it to a code playground site (such as JSBin.com, JSFiddle.com, or Dabblet.com)and then post a link to it from the forum.

(Other popular playgrounds include CSSDeck.com and CodePen.com - but these sites place more emphasis on show and tell.)

VALIDATION TOOLS

There are a number of online validation tools that can help you try to find errors in your code:

JAVASCRIPT

http://www.jslint.com
http://www.jshint.com

JSON

http://www.jsonlint.com

JQUERY

There is a jQuery debugger plugin available for Chrome which can be found in the Chrome web store.

COMMON ERRORS

Here is a list of common errors you might find with your scripts.

GO BACK TO BASICS

JavaScript is case sensitive so check your capitalization.

If you did not use var to declare the variable, it will be a global variable, and its value could be overwritten elsewhere (either in your script or by another script that is included in the page).

If you cannot access a variable's value, check if it is out of scope, e.g., declared within a function that you are not within.

Do not use reserved words or dashes in variable names.

Check that your single / double quotes match properly.

Check that you have escaped quotes in variable values.

Check in the HTML that values of your id attributes are unique.

MISSED / EXTRA CHARACTERS

Every statement should end in a semicolon.

Check that there are no missing closing braces } or parentheses).

Check that there are no commas inside a ,} or ,) by accident.

Always use parentheses to surround a condition that you are testing.

Check the script is not missing a parameter when calling a function.

undefined is not the same as null: null is for objects, undefined is for properties, methods, or variables.

Check that your script has loaded (especially CDN files).

Look for conflicts between different script files.

DATA TYPE ISSUES

Using = rather than == will assign a value to a variable, not check that the values match.

If you are checking whether values match, try to use strict comparison to check datatypes at the same time. (Use === rather than ==.)

Inside a switch statement, the values are not loosely typed (so their type will not be coerced).

Once there is a match in a switch statement, all expressions will be executed until the next break or return statement is executed.

The replace() method only replaces the first match. If you want to replace all occurrences, use the global flag.

If you are using the parseInt() method, you might need to pass a radix (the number of unique digits including zero used to represent the number).

SUMMARY

ERROR HANDLING & DEBUGGING

	If you understand execution contexts (which have two stages) and stacks, you are more likely to find the error in your code.

	Debugging is the process of finding errors. It involves a process of deduction.

	The console helps narrow down the area in which the error is located, so you can try to find the exact error.

	JavaScript has 7 different types of errors. Each creates its own error object, which can tell you its line number and gives a description of the error.

	If you know that you may get an error, you can handle it gracefully using the try, catch, finally statements. Use them to give your users helpful feedback.

 11

CONTENT PANELS

Content panels allow you to showcase extra information within a limited space. In this chapter, you will see several examples of content panels that also give you practical insight into creating your own scripts using jQuery.

In this chapter, you will see how to create many types of content panels: accordions, tabbed panels, modal windows (also known as a lightboxes), a photo viewer, and a responsive slider. Each example of a content panel also demonstrates how to apply the code you have learned throughout the book so far in a practical setting.

Throughout the chapter, reference will be made to more complex jQuery plugins that extend the functionality of the examples shown here. But the code samples in this chapter also show how it is possible to achieve techniques you will have seen on popular websites in relatively few lines of code (without needing to rely on plugins written by other people).

ACCORDION

An accordion features titles which, when clicked, expand to show a larger panel of content.

[image: image]

MODAL WINDOW

When you click on a link for a modal window (or “lightbox”), a hidden panel will be displayed.

[image: image]

RESPONSIVE SLIDER

The slider allows you to show panels of content that slide into view as the user navigates between them.

[image: image]

TABBED PANEL

Tabs automatically show one panel, but when you click on another tab, the panel is changed.

[image: image]

PHOTO VIEWER

Photo viewers display different images within the same space when the user clicks on the thumbnails.

[image: image]

CREATING A JQUERY PLUGIN

The final example revisits the accordion (the first example) and turns it into a jQuery plugin.

[image: image]

SEPARATION OF CONCERNS

As you saw in the introduction to this book, it is considered good practice to separate your content (in HTML markup), presentation (in CSS rules), and behaviors (in JavaScript).

In general, your code should reflect that:

	HTML is responsible for structuring content

	CSS is responsible for presentation

	JavaScript is responsible for behavior

Enforcing this separation produces code that is easier to maintain and reuse. While this may already be a familiar concept to you, it's important to remember as it is very easy to mix these concerns in with your JavaScript. As a rule, editing your HTML templates or stylesheets should not necessitate editing your scripts and vice versa.

You can also place event listeners and calls to functions in JavaScript files rather than adding them to the end of an HTML document.

If you need to change the styles associated with an element, rather than having styles written in the JavaScript, you can update the value of the class attributes for those elements. In turn, they can trigger new rules from the CSS file that change the appearance of those elements.

When your scripts access the DOM, you can uncouple them from the HTML by using class selectors rather than tag selectors.

ACCESSIBILITY & NO JAVASCRIPT

When writing any script, you should think about those who might be using a web page in different situations than you.

ACCESSIBILITY

Whenever a user can interact with an element:

	If it is a link, use <a>

	If it acts like a button, use a button

Both can gain focus, so users can move between them focusable elements using the Tab key (or other non-mouse solution). And although any element can become focusable by setting its tabindex attribute, only <a> elements and some input elements fire a click event when users press the Enter key on their keyboard (the ARIA role=“button” attribute will not simulate this event).

NO JAVASCRIPT

This chapter's accordion menu, tabbed panels, and responsive slider all hide some of their content by default. This content would be inaccessible to visitors that do not have JavaScript enabled if we didn't provide alternative styling. One way to solve this is by adding a class attribute whose value is no-js to the opening <html> tag. This class is then removed by JavaScript (using the replace() method of the String object) if JavaScript is enabled. The no-js class can then be used to provide styles targeted to visitors who do not have JavaScript enabled.

[image: image]

[image: image]

ACCORDION

When you click on the title of an accordion, its corresponding panel expands to reveal the content.

An accordion is usually created within an unordered list (in a element). Each element is a new item in the accordion. The items contain:

	A visible label (in this example, it is a <button>)

	A hidden panel holding the content (a <div>)

Clicking a label prompts the associated panel to be shown (or to be hidden if it is in view). To just hide or show a panel, you could change the value of the class attribute on the associated panel (triggering a new CSS rule to show or hide it). But, in this case, jQuery will be used to animate the panel into view or hide it.

HTML5 introduces <details> and <summary> elements to create a similar effect, but (at the time of writing) browser support was not widespread. Therefore, a script like this would still be used for browsers that do not support those features.

[image: image]

Other tabs scripts include liteAccordion and zAccordion. They are also included in jQuery UI and Bootstrap.

ACCORDION WITH ALL PANELS COLLAPSED

[image: image]

When the page loads, CSS rules are used to hide the panels.

Clicking a label prompts the hidden panel that follows it to animate and reveal its full height. This is done using jQuery.

Clicking on the label again would hide the panel.

ANIMATING CONTENT WITH SHOW, HIDE, AND TOGGLE

jQuery's .show(), .hide(), and .toggle() methods animate the showing and hiding of elements.

jQuery calculates the size of the box, including its content, and any margins and padding. This helps if you do not know what content appears in a box.

(To use CSS animation, you would need to calculate the box's height, margin and padding.)

[image: image]

.toggle() saves you writing conditional code to tell whether the box is already being shown or not. (If a box is shown, it hides it, and if hidden, it will show it.)

The three methods are all shorthand for the animate() method. For example, the show() method is shorthand for:

$(‘.accordion-panel’)
.animate({
 height: ‘show’,
 paddingTop: ‘show’,
 paddingBottom: ‘show’,
 marginTop: ‘show’,
 marginBottom: ‘show’
});

CREATING AN ACCORDION

Below you can see a diagram, rather like a flowchart. These diagrams have two purposes. They help you:

i) Follow the code samples; the numbers on the diagram correspond with the steps on the right, and the script on the right-hand page. Together, the diagrams, steps, and comments in the code should help you understand how each example works.

ii) Learn how to plan a script before coding it.

This is not a “formal” diagram style, but it gives you a visual idea of what is going on with the script. The diagrams show how a collection of small, individual instructions achieve a larger goal, and if you follow the arrows you can see how the data flows around the parts of the script.

[image: image]

Some programmers use Unified Modeling Language or class diagrams - but they have a steeper learning curve, and these flowcharts are here to help you see how the interpreter moves through the script.

Now let's take a look at how the diagram is translated into code. The steps below correspond to the numbers next to the JavaScript code on the right-hand page and the diagram on the left.

1. A jQuery collection is created to hold elements whose class attribute has a value of accordion. In the HTML you can see that this corresponds to the unordered list element (there could be several lists on the page, each acting as an accordion). An event listener waits for the user to click on one of the buttons whose class attribute has a value of accordion-control. This triggers an anonymous function.

2. The preventDefault() method prevents browsers treating the the button like a submit button. It can be a good idea to use the preventDefault() method early in a function so that anyone looking at your code knows that the form element or link does not do what they might expect it to.

3. Another jQuery selection is made using the this keyword, which refers to the element the user clicked upon. Three jQuery methods are applied to that jQuery selection holding the element the user clicked on.

4. .next(‘.accordion-panel’) selects the next element with a class of accordion-panel.

5. .not(‘:animated’) checks that it is not in the middle of being animated. (If the user repeatedly clicks the same label, this stops the .slideToggle() method from queuing multiple animations.)

6. .slideToggle() will show the panel if it is currently hidden and will hide the panel if it is currently visible.

[image: image]

[image: image]

[image: image]

Note how steps 4, 5, and 6 are chained off the same jQuery selection.
You saw a screenshot of the accordion example on p492, at the start of this section.

TABBED PANEL

When you click on one of the tabs, its corresponding panel is shown. Tabbed panels look a little like index cards.

You should be able to see all of the tabs, but:

	Only one tab should look active.

	Only the panel that corresponds to the active tab should be shown (all other panels should be hidden).

The tabs are typically created using an unordered list. Each element represents a tab and within each tab is a link.

The panels follow the unordered list that holds the tabs, and each panel is stored in a <div>.

To associate the tab to the panel:

	The link in the tab, like all links, has an href attribute.

	The panel has an id attribute.

Both attributes share the same value. (This is the same principle as creating a link to another location within an HTML page.)

[image: image]

Other tabs scripts include Tabslet and Tabulous. They are also included in jQuery UI and Bootstrap.

[image: image]

When the page loads, CSS is used to make the tabs sit next to each other and to indicate which one is considered active.

CSS also hides the panels, except for the one that corresponds with the active tab.

When the user clicks on the link inside a tab, the script uses jQuery to get the value of the href attribute from the link. This corresponds to the id attribute on the panel that should be shown.

The script then updates the values in the class attribute on that tab and panel, adding a value of active. It also removes that value from the tab and panel that had previously been active.

If the user does not have JavaScript enabled, the link in the tab takes the user to the appropriate part of the page.

CREATING TAB PANELS

[image: image]

The flowchart shows the steps that are involved in creating tabs when they are found in the HTML. Below, you can see how these steps can be translated into code:

1. A jQuery selection picks all sets of tabs within the page. The .each() method calls an anonymous function that is run for each set of tabs (like a loop). The code in the anonymous function deals with one set of tabs at a time, and the steps would be repeated for each set of tabs on the page.

2. Four variables hold details of the active tab:
i) $this holds the current set of tabs.
ii) $tab holds the currently active tab.
The .find() method selects the active tab.
iii) $link holds the <a> element within that tab.
iv) $panel holds the value of the href attribute for the active tab (this variable will be used to hide the panel if the user selects a different one).

3. An event listener is set up to check for when the user clicks on any tab within that list. When they do, it runs another anonymous function.

4. e.preventDefault() prevents the link that users clicked upon taking them to that page.

5. Creates a variable called $link to hold the current link inside a jQuery object.

6. Creates a variable called id to hold the value of the href attribute from the tab that was clicked. It is called id because it is used to select the matching content panel (using its id attribute).

7. An if statement checks whether the id variable contains a value, and the current item is not active. If both conditions are met:

8. The previously active tab and panel have the class of active removed (which deactivates the tab and hides the panel).

9. The tab that was clicked on and its corresponding panel both have active added to their class attributes (which makes the tab look active and displays its corresponding panel, which was hidden). At the same time, references to these elements are stored in the $panel and $tab variables.

[image: image]

[image: image]

[image: image]

MODAL WINDOW

A modal window is any type of content that appears “in front of” the rest of the page's content. It must be “closed” before the rest of the page can be interacted with.

In this example, a modal window is created when the user clicks on the heart button in the top left-hand corner of the page.

The modal window opens in the center of the page, allowing users to share the page on social networks.

The content for the modal window will typically sit within the page, but it is hidden when the page loads using CSS.

JavaScript then takes that content and displays it inside <div> elements that create the modal window on top of the existing page.

Sometimes modal windows will dim out the rest of the page behind them. They can be designed to either appear automatically when the page has finished loading or they can be triggered by the user interacting with the page.

[image: image]

Other examples of modal window scripts include Colorbox (by Jack L. Moore), Lightbox 2 (by Lokesh Dhakar), and Fancybox (by Fancy Apps). They are also included in jQuery UI and Bootstrap.

A design pattern is a term programmers use to describe a common approach to solving a range of programming tasks.

This script uses the module pattern. It is a popular way to write code that contains both public and private logic.

Once the script has been included in the page, other scripts can use its public methods: open(), close(), or center(). But users do not need to access the variables that create the HTML, so they remain private (on p505 the private code is shown on green).

Using modules to build parts of an application has benefits:

	It helps organize your code.

	You can test and reuse the individual parts of the app.

	It creates scope, preventing variable /method names clashing with other scripts.

[image: image]

This modal window script creates an object (called modal), which, in turn, provides three new methods you can use to create modal windows:

open() opens a modal window
close() closes the window
center() centers it on the page

Another script would be used to call the open() method and specify what content should appear in the modal window.

Users of this script only need to know how the open() method works because:

	close() is called by an event listener when the user clicks on the close button.

	center() is called by the open() method and also by an event listener if the user resizes the window.

When you call the open() method, you specify the content that you want the modal window to contain as a parameter (you can also specify its width and height if you want).

In the diagram, you can see that the script adds the content to the page inside <div> elements.

div.modal acts as a frame around the modal window.

div.modal-content acts as a container for the content being added to the page.

button.modal-close allows the user to close the modal window.

CREATING MODALS

The modal script needs to do two things:

1. Create the HTML for the modal window

2. Return the modal object itself, which consists of the open(), close(), and center() methods

Including the script in the HTML page does not have any visible effect (rather like including jQuery in your page does not affect the appearance of the page).

But it does allow any other script you write to use the functionality of the modal object and call its open() method to create a modal window (just like including jQuery script includes the jQuery object in your page and allows you to use its methods).

This means that people who use the script only need to know how to call the open() method and tell it what they want to appear in the modal window.

In the example on the right, the modal window is called by a script called modal-init.js. You will see how to create the modal object and its methods on the next double page spread, but for now consider that including this script is the equivalent of adding the following to your own script. It creates an object called modal and adds three methods to the object:

var modal = {
 center: function() {
 // Code for center() goes here
 },
 open: function(settings) {
 // Code for open() goes here
 },
 close: function() {
 // Code for close() goes here
 }
};

The modal-init.js file removes the share content from the HTML page. It then adds an event handler to call the modal object's open() method to open a modal window containing the content it just removed from the page. init is short for initialize and is commonly used in the name of files and functions that set up a page or other part of a script.

[image: image]

1. First the script gets the contents of the element that has an id attribute whose value is share-options. Note how the jQuery .detach() method removes this content from the page.

2. Next an event handler is set to respond to when the user clicks on the share button. When they do, an anonymous function is run.

3. The anonymous function uses the open() method of the modal object. It takes parameters in the form of an object literal:

	content: the content to be shown in the modal window. Here it is the content of the element whose id attribute has a value of share-options.

	width: the width of the modal window.

	height: the height of the modal window.

Step 1 uses the .detach() method because it keeps the elements and event handlers in memory so they can be used again later. jQuery also has a .remove() method but it removes the items completely.

USING THE MODAL SCRIPT

[image: image]

In the HTML above, you should note three things:

1. A <div> that contains the sharing options.

2. A link to the script that creates the modal object (modal-window.js).

3. A link to the script that will open a modal window using the modal object (modal-init.js), using it to display the sharing options.

The modal-init.js file below opens the modal window. Note how the open() method is passed three pieces of information in JSON format:

i) content for modal (required)

ii) width of modal (optional - overrides default)

iii) height of modal (optional - overrides default)

[image: image]

The z-index of the modal window must be very high so that it appears on top of any other content.

These styles ensure the modal window sits on top of the page (there are more styles in the full example).

[image: image]

MODAL OBJECT

[image: image]

Below are the steps for creating the modal object. Its methods are used to create modal windows.

1. The modal object is declared. The methods of this object are created by an Immediately Involved Function Expression or IIFE (see p97). (This step is not shown in the flowchart.)

2. Store the current window object in a jQuery selection, then create the three HTML elements needed for the modal window. Assemble the modal window and store it in $modal.

3. Add an event handler to the close button which calls the modal object's close() method.

4. Following the return keyword, there is a code block in curly braces. It creates three public methods of the modal object. Please note: This step is not shown in the flowchart.

5. The center() method creates two variables:
i) top: takes the height of the browser window and subtracts the height of the modal window. This number is divided by two, giving the distance of the modal from the top of the browser window.
ii) left: takes the width of the browser window and subtracts the width of modal window. This number is divided by two, giving the distance of the modal from the left of the browser window.

6. The jQuery .css() method uses these variables to position the modal in the center of the page.

7. open() takes an object as a parameter; it is referred to as settings (the data for this object was shown on the previous page).

8. Any existing content is cleared from the modal, and the content property of the settings object is added to the HTML created in steps 1 and 2.

9. The width and height of the modal are set using values from the settings object. If none were given, auto is used. Then the modal is added to the page using the appendTo() method.

10. center() is used to center the modal window.

11. If the window is resized, call center() again.

12. close() empties the modal, detaches the HTML from the page, and removes any event handlers.

In the code below, the lines that are highlighted in green are considered private. These lines of code are only used within the object. (This code cannot be accessed directly from outside the object.)

When this script has been included in a page, the center(), open(), and close() methods in steps 5-12 are available on the modal object for other scripts to use. They are referred to as public.

[image: image]

PHOTO VIEWER

The photo viewer is an example of an image gallery. When you click on a thumbnail, the main photograph is replaced with a new image.

In this example, you can see one main image with three thumbnails underneath it.

The HTML for the photo viewer consists of:

	One large <div> element that will hold the main picture. The images that sit in the <div> are centered and scaled down if necessary to fit within the allocated area.

	A second <div> element that holds a set of thumbnails that show the other images you can view. These thumbnails sit inside links. The href attribute on those links point to the larger versions of their images.

[image: image]

Other gallery scripts include Galleria, Gallerific, and TN3Gallery.

[image: image]

When you click on a thumbnail, an event listener triggers an anonymous function that:

1. Looks at the value of the href attribute (which points to the large image)

2. Creates a new element to hold that image

3. Makes it invisible

4. Adds it to the big <div> element

Once the image has loaded, a function called crossfade() is used to fade between the existing image and the new one that has been requested.

USING THE PHOTO VIEWER

In order to use the photo viewer, you create a <div> element to hold the main image. It is empty, and its id attribute has a value of photo-viewer.

The thumbnails sit in another <div>. Each one is in an <a> element with three attributes:

	href points to the larger version of the image

	class always has a value of thumb and the current main image has a value of active

	title describes the image (it will be used for alt text)

[image: image]

The script comes before the closing </body> tag. As you will see, it simulates the user clicking on the first thumbnail.

The <div> that holds the main picture uses relative positioning. This removes the element from normal flow, so a height for the viewer must be specified.

While images are loading, a class of is-loading is added to them (it displays an animated loading gif). When the image has loaded, is-loading is removed.

If the images are larger than the viewer the max-width and max-height properties will scale them to fit. To center the image within the viewer a mix of CSS and JavaScript will be used. See p511 for detailed explanation.

[image: image]

ASYNCHRONOUS LOADING & CACHING IMAGES

This script (shown on the next page) shows two interesting techniques:
1. Dealing with asynchronous loading of content
2. Creating a custom cache object

SHOWING THE RIGHT IMAGE WHEN LOADING IMAGES ASYNCHRONOUSLY

PROBLEM:

The larger images are only loaded into the page when the user clicks on a thumbnail, and the script waits for the image to fully load before displaying it.

Because larger images take longer to load, if a user clicks on two different images in quick succession:

1. The second image could load faster than the first one and be displayed in the browser.

2. It would be replaced by the first image the user clicked on when that image had loaded. This could make users think the wrong image has loaded.

SOLUTION:

When the user clicks on a thumbnail:

	A function-level variable called src stores the path to this image.

	A global variable called request is also updated with the path to this image.

	An event handler is set to call an anonymous function when this image has loaded.

When the image loads, the event handler checks if the src variable (which holds the path to this image) matches the request variable. If the user had clicked on another image since the one that just loaded, the request variable would no longer match the src variable and the image should not be shown.

CACHING IMAGES THAT HAVE ALREADY LOADED IN THE BROWSER

PROBLEM:

When the user requests a big image (by clicking on the thumbnail), a new element is created and added to the frame.

If the user goes back to look at an image they have already selected, you do not want to create a new element and load the image all over again.

SOLUTION:

A simple object is created, and it is called cache. Every time a new element is created, it will be added to the cache object.

That way, each time an image is requested, the code can check if the corresponding element is already in the cache (rather than creating it again).

PHOTO VIEWER SCRIPT (1)

This script introduces some new concepts, so it will be spread over four pages. On these two pages you see the global variables and crossfade() function.

[image: image]

1. A set of global variables is created. They can be used throughout the script - both in the crossfade() function (on this page) and the event handlers (on p512).

2. The crossfade() function will be called when the user has clicked on a thumbnail. It is used to fade between the old image and the new one.

3. An if statement checks to see if there is an image loaded at the moment. If there is, two things happen: the .stop() method will stop any current animation and then .fadeOut() will fade the image out.

4. To center the image in the viewer element, you set two CSS properties on the image. Combined with the CSS rules you saw on p508, these CSS properties will center the image in its container. (See the diagrams on the bottom of p511.)
i) marginleft: gets the width of the image using the .width() method, divides it by two, and uses that number as a negative margin.
ii) marginTop: gets the height of the image, using the .height() method, divides it by two, and makes that number a negative margin.

5. If the new image is currently being animated, the animation is stopped and the image is faded in.

6. Finally, the new image becomes the current image and is stored in the $current variable.

THE CACHE OBJECT

The idea of a cache object might sound complicated, but all objects are just sets of key/value pairs. You can see what the cache object might look like on the right. When an image is requested by clicking on a new thumbnail, a new property is added to the cache object:

	The key added to the cache object is the path to the image (below this is referred to as src). Its value is another object with two properties.

	src.$img holds a reference to a jQuery object that contains the newly created element.

	src.isLoading is a property indicating whether or not it is currently loading (its value is a Boolean).

var cache = {
 “c11/img/photo-1.jpg”: {
 “$img”: jQuery object,
 “isLoading”: false
 },
 “c11/img/photo-2.jpg”: {
 “$img”: jQuery object,
 “isLoading”: false
 },
 “c11/img/photo-3.jpg”: {
 “$img”: jQuery object,
 “isLoading”: false
 }
}

[image: image]

CENTERING THE IMAGE

[image: image]

i) Centering the image involves three steps. In the style sheet, absolute positioning is used to place it in the top-left corner of the containing element.

ii) In the style sheet, the image is moved down and right by 50% of the container's width and height:
width: 800px ÷ 2 = 400px
height: 500px ÷ 2 = 250px

iii) In the script, negative margins move the image up and left by half the image's width and height:
width: 500px ÷ 2 = 250px
height: 400px ÷ 2 = 200px

PHOTO VIEWER SCRIPT (2)

[image: image]

1. The thumbnails are wrapped in links. Every time users click on one, the anonymous function will run.

2. Three variables are created:
i) $img will be used to create new elements that will hold the larger images when they load.
ii) src (a function-level variable) holds the path to the new image (it was in the href attribute of the link).
iii) request (a global variable) holds the same path.

3. The link is prevented from loading the image.

4. The active class is removed from all the thumbs and is added to the thumb that was clicked on.

5. If the image is in the cache object and it has finished loading, the script calls crossfade().

6. If the image has not yet loaded, the script creates a new element.

7. It is added to the cache. isLoading is set to true.

8. At this point, the image has not loaded yet (only an empty element was created). When the image loads, the load event triggers a function (which needs to be written before the image loads).

9. First, the function hides the image that just loaded.

10. It then removes the is-loading class from the frame and adds the new image to the frame.

11. In the cache object, isLoading is set to false (as it will have loaded when this function runs).

12. An if statement checks if the image that just loaded is the one the user last requested. To see how this is done, look back at step 2 again:

	The src variable holds the path to the image that just loaded. It has function-level scope.

	The request variable is updated each time the user clicks on an image. It has global scope.

So, if the user has clicked on an image since this one, the request and src variables will not be the same and nothing should be done. If they do match, then: crossfade() is called to show the image.

13. Having set all of this in place, it is time to load the image. The is-loading class is added to the frame.

14. Finally, by adding a value to the src attribute on the image, the image will start to load. Its alt text is retrieved from the title attribute on the link.

15. The last line of the script simulates the user clicking on the first thumbnail. This will load the first image into the viewer when the script first runs.

[image: image]

RESPONSIVE SLIDER

A slider positions a series of items next to each other, but only shows one at a time. The images then slide from one to the next.

This slider loads several panels, but only shows one at a time. It also provides buttons that allow users to navigate between each of the slides and a timer to move them automatically after a set interval.

In the HTML, the entire slider is contained within a <div> element whose class attribute has value of slider-viewer. In turn, the slider needs two further <div> elements:

	A container for the slides. Its class attribute has a value of slide-group. Inside this container, each individual slide is in another <div> element.

	A container for the buttons. Its class attribute has a value of slide-buttons. The buttons are added by the script.

If the HTML contains markup for more than one slider, the script will automatically transform all of them into separate sliders.

[image: image]

Other slider scripts include Unslider, Anything Slider, Nivo Slider, and WOW Slider. Sliders are also included in jQuery UI and Bootstrap.

When the page first loads, the CSS hides all of the slides, which takes them out of normal flow.
The CSS then sets the display property of the first slide block to make it visible.

The script then goes through each slide and:

	Assigns an index number to that slide

	Adds a button for it under the slide group

For example, if there are four slides, when the page first loads, the first slide will be shown by default, and four buttons will be added underneath it.

[image: image]

The index numbers allow the script to identify each individual slide. To keep track of which slide is currently being shown, the script uses a variable called currentIndex (holding the index number of the current slide). When the page loads, this is 0, so it shows the first slide. It also needs to know which slide it is moving to, which is stored in a variable called newSlide.

When it comes to moving between the slides (and creating the sliding effect), if the index number of the new slide is higher than the index number of the current slide, then the new slide is placed to the right of the group. As the visible slide is animated to the left, the new slide automatically starts to come into view, taking its place.

[image: image]

If the index number of the new slide is lower than the current index, then the new slide is placed to the left of the current slide, and as it is animated to the right, the new slide starts to come into view.

[image: image]

After the animation, the hidden slides are placed behind the one that is currently active.

USING THE SLIDER

As long as you include the script within your page, any HTML that uses the structure shown here will get transformed into a slider.

There could be several sliders on the page and each one will be transformed using the same script that you see on the next double-page spread.

[image: image]

The width of the slide-viewer is not fixed, so it works in a responsive design. But a height does need to be specified because the slides have an absolute position (this removes them from the document flow and without it they could only be 1px tall).

Each slide is shown at the same width and height as the viewer. If the content of a slide is larger than the viewer, the overflow property on the slide-viewer hides the parts of the slides that extend beyond the frame. If it is smaller it is positioned to the top-left.

[image: image]

SLIDER SCRIPT OVERVIEW

A jQuery selector finds the sliders within the HTML markup. An anonymous function then runs for each one to create the slider. There are four key parts to the function.

1: SETUP

Each slider needs some variables, they are in function-level scope so they:

	Can have different values for each slider

	Do not conflict with variables outside of the script

2: CHANGING SLIDE: move()

move() is used to move from one slide to another, and to update the buttons that indicate which slide is currently being shown. It is called when the user clicks on a button, and by the advance() function.

3: A TIMER TO SHOW THE NEXT SLIDE AFTER 4 SECONDS: advance()

A timer will call move() after 4 seconds. To create a timer, JavaScript's window object has a setTimeout() method. It executes a function after a number of milliseconds. The timer is often assigned to a variable, and it uses the following syntax:

var timeout = setTimeout(function, delay);

	timeout is a variable name that will be used to identify the timer.

	function can be a named function or an anonymous function.

	delay is the number of milliseconds before the function should run.

To stop the timer, call clearTimeout(). It takes one parameter: the variable used to identify the timer: clearTimeout(timeout);

4: PROCESSING EACH OF THE SLIDES THAT APPEAR WITHIN A SLIDER

The code loops through each of the slides to:

	Create the slider

	Add a button for each slide with an event handler that calls the move() function when users clicks it

SLIDER SCRIPT

[image: image]

1. There may be several sliders on a page, so the script starts by looking for every element whose class attribute has a value of slider. For each one, an anonymous function is run to process that slider.

2. Variables are created to hold:
i) The current slider
ii) The element that wraps around the slides
iii) All of the slides in this slider
iv) An array of buttons (one for each slide)
v) The current slide
vi) The timer

3. The move() function appears next; see p520. Please note: This is not shown in the flowchart.

4. The advance() function creates the timer.

5. It starts by clearing the current timer. A new timer is set and when the time has elapsed it will run an anonymous function.

6. An if statement checks whether or not the current slide is the last one.
If it is not the last slide then it calls move() with a parameter that tells it to go to the next slide.
Otherwise it tells move() to go to the first slide.

7. Each slide is processed by an anonymous function.

8. A <button> element is created for each slide.

9. If the index number of that slide is the same as the number held in the currentIndex variable, then a class of active is added to that button.

10. An event handler is added to each button. When clicked it calls the move() function. The slide's index number indicates which slide to move to.

11. The buttons are then added to the button container, and to the array of buttons.
This array is used by the move() function to indicate which slide is currently being shown.

12. advance() is called to start the timer.

[image: image]

PROBLEM: GETTING THE RIGHT GAP BETWEEN SLIDES USING A TIMER

Each slide should show for four seconds (before the timer moves it on to the next slide). But if the user clicks a button after two seconds, then the new slide might not show for four seconds because the timer is already counting down.

SOLUTION: RESET THE TIMER WHENEVER A BUTTON IS CLICKED

The advance() function clears the timer before setting it off again. Every time the user clicks on a button the move() function (shown on the next two pages) it calls advance() to ensure the new slide is shown for four seconds.

SLIDER MOVE() FUNCTION

[image: image]

1. The move() function will create the animated sliding movement between two slides. When it is called, it needs to be told which slide to move to.

2. Two variables are created that are used to control whether the slider is moving to the left or right.

3. advance() is called to reset the timer.

4. The script checks if the slider is currently animating or if the user selected the current slide. In either case, nothing should be done, and the return statement stops the rest of the code from running.

5. References to each of the buttons were stored in an array in step 11 of the script on the previous page. The array is used to update which button is active.

6. If the new item has a higher index number, then the slider will need to move from right to left. If the item has a lower index number, the slider will need to move from left to right. These variable values are set first and are then used in step 7.

slideLeft positions the new slide in relation to the current slide. (100% sits the new slide to the right of it and -100% sits the new slide to the left of it.)

animateLeft indicates whether the current slide should move to the left or the right, letting the new slide take its place. (-100% moves the current slide to the left, 100% moves the current slide to the right.)

7. The new slide is positioned to the right or the left of the current slide using the value in the slideLeft variable and its display property is set to block so that it becomes visible. That new slide is identified using newIndex, which was passed into the function.

8. The current slide is then moved to the left or right using the value stored in the animateLeft variable. That slide is selected using the currentIndex variable, which was defined at the start of the script.

[image: image]

Once the slide has finished animating, an anonymous function performs housekeeping tasks:

9. The slide that was the currentIndex is hidden.

10. The position of the left-hand side of the new slide is set to 0 (left-aligning it).

11. The position of all of the other slides is set so the left-hand side is 0 (left-aligning them).

12. At this point, the new slide will be visible, and the transition is complete, so it is time to update the currentIndex variable to hold the index number of the slide that has just been shown. This is easily done by giving it the value that was stored in the newIndex variable.

Now that this function has been defined, as you saw on the p519, the code creates a timer and goes through each slide adding a button and an event handler for it. (Steps 4-12 on the page p519.)

CREATING A JQUERY PLUGIN

jQuery plugins allow you to add new methods to jQuery without customizing the library itself.

jQuery plugins have benefits over plain scripts:

	You can perform the same task on any elements that match jQuery's flexible selector syntax

	Once the plugin has done its job, you can chain other methods after it (on the same selection)

	They facilitate re-use of code (either within one project or across multiple projects)

	They are commonly shared within the JavaScript and jQuery community

	Namespace collisions (problems when two scripts use the same variable name) are prevented by placing the script is placed in an IIFE (immediately invoked function expression, which you met on p97)

You can turn any function into a plugin if it:

	Manipulates a jQuery selection

	Can return a jQuery selection

The basic concept is that you:

	Pass it a set of DOM elements in a jQuery selection

	Manipulate the DOM elements using the jQuery plugin code

	Return the jQuery object so that other functions can be chained off it

This final example shows you how to create a jQuery plugin. It takes the accordion example you saw at the start of the chapter and turns it into a plugin.

The earlier version applied to all matching markup on the page; the plugin version requires that users call the accordion() method on a jQuery selection.

Here a jQuery selection is made collecting elements with a class of menu. The .accordion() method is called; once that has run, .fadeIn() is called.

[image: image]

1. A jQuery selection is made containing any elements which have the class of menu.

2. The .accordion() method is called on those elements. It has one parameter; the speed of animation (in milliseconds).

3. The .fadeIn() method is applied to the same selection of elements once .accordion() has done its job.

BASIC PLUGIN STRUCTURE

1) ADDING A METHOD TO JQUERY

jQuery has an object called .fn which helps you extend the functionality of jQuery.

Plugins are written as methods that are added to the .fn object.

Parameters that can be passed to the function are placed inside the parentheses on the first line:

$.fn.accordion = function(speed) {
 // Plugin will go here
}

2) RETURNING THE JQUERY SELECTION TO CHAIN METHODS

jQuery works by collecting a set of elements and storing them in a jQuery object. The jQuery object's methods can be used to alter the selected elements.

Because jQuery lets you chain multiple methods to the same selection, once the plugin has done its job it should return the selection for the next method.

The selection is returned using:

1. The return keyword (sends a value back from a function)

2. this (refers to the selection that was passed in)

$.fn.accordion = function(speed) {
 // Plugin will go here
 return this;
}

3) PROTECTING THE NAMESPACE

jQuery is not the only JavaScript library to use $ as a shorthand, so the plugin code lives in an IIFE, which creates function-level scope for the code in the plugin.

On the first line below, the IIFE has one named parameter: $. On the last line, you can see that the jQuery selection is passed into the function.

Inside the plugin, $ acts like a variable name. It references the jQuery object containing the set of elements that the plugin is supposed to be working with.

(function($){
 $.fn.accordion = function(speed) {
 // Plugin code will go here
 }
})(jQuery);

If you want to pass in more values, it is typically done using a single parameter called options.

When the function is called, the options parameter contains an object literal.

The object can contain a set of key/value pairs for the different options.

THE ACCORDION PLUGIN

[image: image]

To use the plugin, you create a jQuery selection that contains any elements that hold an accordion. In the example on the right, the accordion is in a element that has a class name of menu (but you could use any name you wish). You then call the .accordion() method on that selection, like so:

$(‘.menu’).accordion(500);

This code could be placed in the HTML document (as shown on the right-hand page), but it would be better placed in a separate JavaScript file that runs when the page loads (to keep the JavaScript separate from the HTML).

You can see the full code for the accordion plugin on the right. The parts in orange are identical to the accordion script at the start of the chapter.

1. The plugin is wrapped in an IIFE to create function-level scope. On the first line, the function is given one named parameter: $ (which means you can use the $ shortcut for jQuery in the function).

10. On the last line of code, the jQuery object is passed into the function (using its full name jQuery rather than its shortcut $). This jQuery object contains the selection of elements that the plugin is working with. Together, points 1 and 10 mean that in the IIFE, $ refers to the jQuery object and it will not be affected if other scripts use $ as a shorthand, too.

2. Inside the IIFE, the new .accordion() method is created by extending the fn object. It takes the one parameter of speed.

3. The this keyword refers to the jQuery selection that was passed into the plugin. It is used to create an event handler that will listen for when the user clicks on an element with a class attribute whose value is accordion-control. When the user does, the anonymous function runs to animate the corresponding panel into or out of view.

4. The default action of the link is prevented.

5. In the anonymous function, $(this) refers to a jQuery object containing the element that the user clicked upon.

6. 7. 8. The only difference between this anonymous function and the one used in the example at the start of the chapter is that the .slideToggle() method takes a parameter of speed to indicate how fast the panel should be shown or hidden. (It is specified when the .accordion() method is called.)

9. When the anonymous function has done its work, the jQuery object containing the selected elements is returned from the function, allowing the same set of elements to be passed to another jQuery method.

[image: image]

Note how the filename for the jQuery plugin starts with jquery. to indicate that this script relies upon jQuery.

After the accordion plugin script has been included, the accordion() method can be used on any jQuery selection.

Below you can see the HTML for the accordion. This time it includes both the jQuery script and the jQuery accordion script.

[image: image]

SUMMARY

CONTENT PANELS

	Content panels offer ways to show more content within a limited area.

	Popular types of content panels include accordions, tabs, photo viewers, modal windows, and sliders.

	As with all website code, it is advisable to separate content (HTML), presentation (CSS), and behavior (JavaScript) into different files.

	You can create objects to represent the functionality you want (as with the modal window).

	You can turn functions into jQuery plugins that allow you to re-use code and share it with others.

	Immediately invoked function expressions (IIFEs) are used to contain scope and prevent naming collisions.

 12

FILTERING, SEARCHING & SORTING

If your pages contain a lot of data, there are tree techniques that you can use to help your users to find the content they are looking for.

FILTERING

Filtering lets you reduce a set of values, by selecting the ones that meet stated criteria.

SEARCH

Search lets you show the items that match one or more words the user specifies.

SORTING

Sorting lets you reorder a set of items on the page based on criteria (for example, alphabetically).

Before you get to see how to deal with filtering, searching, and sorting, it is important to consider how you are going to store the data that you are working with. In this chapter many of the examples will use arrays to hold data stored in objects using literal notation.

[image: images]

JAVASCRIPT ARRAY METHODS

An array is a kind of object. All arrays have the methods listed below; their property names are index numbers. You will often see arrays used to store complex data (including other objects).

Each item in an array is sometimes called an element. It does not mean that the array holds HTML elements; element is just the name given to the pieces of information in the array. *Note some methods only work in IE9+.

[image: images]

JQUERY METHODS FOR FILTERING & SORTING

jQuery collections are array-like objects representing DOM elements. They have similar methods to an array for modifying the elements. You can use other jQuery methods on the selection once they have run.

In addition to the jQuery methods shown below, you may see animation methods chained after filtering and sorting methods to create animated transitions as the user makes a selection.

[image: images]

SUPPORTING OLDER BROWSERS

Older browsers do not support the latest methods of the Array object. But a script called the ECMAScript 5 Shim can reproduce these methods. ECMAScript is the standard that modern JavaScript is based upon.

[image: images]

ECMAScript is the official name for the standardized version of JavaScript, although most people still call it JavaScript unless they are discussing new features.

ECMA International is a standards body that looks after the language, just like the W3C looks after HTML and CSS. And, browser manufacturers often add features beyond the ECMA specs (just as they do with HTML & CSS).

In the same way that the latest features from the HTML and CSS specifications are only supported in the most recent browsers, so the latest features of ECMAScript are only found in recent browsers. This will not affect much of what you have learned in this book (and jQuery helps iron out issues with backwards compatibility), but it is worth noting for the techniques you meet in this chapter.

The following methods of the Array object were all introduced in ECMAScript version 5, and they are not supported by Internet Explorer 8 (or older): forEach(), some(), every(), filter(), map().

For these methods to work in older browsers you include the ECMAScript 5 Shim, a script that reproduces their functionality for legacy browsers: https://github.com/es-shims/es5-shim

ARRAYS VS. OBJECTS CHOOSING THE BEST DATA STRUCTURE

In order to represent complex data you might need several objects. Groups of objects can be stored in arrays or as properties of other objects. When deciding which approach to use, consider how you will use the data.

OBJECTS IN AN ARRAY

When the order of the objects is important, they should be stored in an array because each item in an array is given an index number. (Key-value pairs in objects are not ordered.) But note that the index number can change if objects are added/removed. Arrays also have properties and methods that help when working with a sequence of items, e.g.,

	The sort() method reorders items in an array.

	The length property counts the number of items.

var people = [
 {name: ‘Casey’, rate: 70, active: true},
 {name: ‘Camille’, rate: 80, active: true},
 {name: ‘Gordon’, rate: 75, active: false},
 {name: ‘Nigel’, rate: 120, active: true}
]

To retrieve data from an array of objects, you can use the index number for the object:
// This retrieves Camille's name and rate
person[1].name;
person[1].rate;

To add/remove objects in an array you use array methods.

To iterate over the items in an array you can use forEach().

OBJECTS AS PROPERTIES

When you want to access objects using their name, they work well as properties of another object (because you would not need to iterate through all objects to find that object as you would in an array).

But note that each property must have a unique name. For example, you could not have two properties both called Casey or Camille within the same object in the following code.

var people = {
 Casey = {rate: 70, active: true},
 Camille = {rate: 80, active: true},
 Gordon = {rate: 75, active: false},
 Nigel = {rate: 120, active: true}
}

To retrieve data from an object stored as a property of another object, you can the object's name:
// This retrieves Casey's rate
people.Casey.rate;

To add/remove objects to an object you can use the delete keyword or set it to a blank string.

To iterate over child objects you can use Object.keys.

FILTERING

Filtering lets you reduce a set of values.
It allows you to create a subset of data that meets certain criteria.

To look at filtering, we will start with data about freelancers and their hourly rate. Each person is represented by an object literal (in curly braces). The group of objects is held in an array:

var people = [
 {
 name: ‘Casey’,
 rate: 60
 },
 {
 name: ‘Camille’,
 rate: 80
 },
 {
 name: ‘Gordon’,
 rate: 75
 },
 {
 name: ‘Nigel’,
 rate: 120
 }
];

The data will be filtered before it is displayed. To do this we will loop through the objects that represent each person. If their rate is more than $65 and less than $90, they are put in a new array called results.

[image: images]

[image: images]

DISPLAYING THE ARRAY

On the next two pages, you will see two different approaches to filtering the data in the people array, both of which involve using methods of the Array object: .forEach() and .filter().

Both methods will be used to go through the data in the people array, find the ones who charge between $65 and $90 per hour and then add those people to a new array called results.

Once the new results array has been created, a for loop will go through it adding the people to an HTML table (the result is shown on the left-hand page).

Below, you can see the code that displays the data about the people who end up in the results array:

1. The entire example runs when the DOM is ready.

2. The data about people and their rates is included in the page (this data is shown on left-hand page).

3. A function will filter the data in the people array and create a new array called results (next page).

4. A <tbody> element is created.

5. A for loop goes through the array and uses jQuery to create a new table row for each person and their hourly rate.

6. The new content is added to the page after the table heading.

[image: images]

USING ARRAY METHODS TO FILTER DATA

The array object has two methods that are very useful for filtering data. Here you can see both used to filter the same set of data. As they filter the data, the items that pass a test are added to a new array.

The two examples on the right both start with an array of objects (shown on p534) and use a filter to create a new array containing a subset of those objects. The code then loops through the new array to show the results (as you saw on the previous page).

	The first example uses the forEach() method.

	The second example uses the filter() method.

forEach()

The forEach() method loops through the array and applies the same function to every item in it. forEach() is very flexible because the function can perform any kind of processing with the items in an array (not just filtering as shown in this example). The anonymous function acts as a filter because it checks if a person's rates are within a specified range and, if so, adds them to a new array.

1. A new array is created to hold matching results.

2. The people array uses the forEach() method to run the same anonymous function on each object (that represents a person) in the people array.

3. If they match the criteria, they are added to the results array using the push() method.

Note how person is used as a parameter name and acts as a variable inside the functions:

	In the forEach() example it is used as a parameter of the anonymous function.

	In the filter() example it is used as a parameter of the priceRange() function.

It corresponds to the current object from the people array and is used to access that object's properties.

filter()

The filter() method also applies the same function to each item in the array, but that function only returns true or false. If it returns true, the filter() method adds that item to a new array.

The syntax is slightly simpler than forEach(), but is only meant to be used to filter data.

1. A function called priceRange() is declared; it will return true if the person's wages are within the specified range.

2. A new array is created to hold matching results.

3. The filter() method applies the priceRange() function to each item in the array. If priceRange() returns true, that item is added to the results array.

STATIC FILTERING OF DATA

[image: images]

[image: images]

The code that you saw on the p535 to show the table results could live in the .forEach() method, but it is separated out here to illustrate the different approaches to filtering and how they can create new arrays.

DYNAMIC FILTERING

If you let users filter the contents of a page, you can build all of the HTML content, and then show and hide the relevant parts as the user interacts with the filters.

Imagine that you were going to provide the user with a slider so that they could update the price that they were prepared to pay per hour. That slider would automatically update the contents of the table based upon the price range the user had specified.

If you built a new table every time the user interacts with the slider (like the previous two examples that showed filtering), it would involve creating and deleting a lot of elements. Too much of this type of DOM manipulation can slow down your scripts.

A far more efficient solution would be to:

1. Create a table row for every person.

2. Show the rows for the people that are within the specified range, and hide the rows that are outside the specified bounds.

Below, the range slider used is a jQuery plugin called noUiSlider (written by Léon Gerson).
http://refreshless.com/nouislider/

[image: images]

Before you see the code for this example, take a moment to think about how to approach this script… Here are the tasks that the script needs to perform:

i) It needs to go through each object in the array and create a row for that person.

ii) Once the rows have been created, they need to be added to the table.

iii) Each row needs to be shown / hidden depending on whether that person is within the price range shown on the slider. (This task happens each time the slider is updated.)

In order to decide which rows to show / hide, the code needs to cross-reference between:

	The person object in the people array (to check how much that person charges)

	The row that corresponds to that person in the table (which needs to be made visible or hidden)

To build this cross-reference we can create a new array called rows. It will hold a series of objects with two properties:

	person: a reference to the object for this person in the people array

	$element: a jQuery collection containing the corresponding row in the table

In the code, we create a function to represent each of the tasks identified on the left. The new cross-reference array will be created in the first function:

makeRows() will create a row in the table for each person and add the new object into the rows array

appendRows() loops through the rows array and adds each of the rows to the table

update() will determine which rows are shown or hidden based on data taken from the slider

In addition, we will add a fourth function: init() This function contains all of the information that needs to run when the page first loads (including creating the slider using the plugin).

init is short for initialize; you will often see programmers using this name for functions or scripts that run when the page first loads.

Before looking at the script in detail, the next two pages are going to explain a little more about the rows array and how it creates the cross-reference between the objects and the rows that represent each person.

STORING REFERENCES TO OBJECTS & DOM NODES

The rows array contains objects with two properties, which associate:
1: References to the objects that represent people in the people array
2: References to the row for those people in the table (jQuery collections)

[image: images]

You have seen examples in this book where variables were used to store a reference to a DOM node or jQuery selection (rather than making the same selection twice). This is known as caching.

This example takes that idea further: as the code loops through each object in the people array creating a row in the table for that person, it also creates a new object for that person and adds it to an array called rows. Its purpose is to create an association between:

	The object for that person in the source data

	The row for that person in the table

When deciding which rows to show, the code can then loop through this new array checking the person's rate. If they are affordable, it can show the row. If not, it can hide the row.

This takes less resources than recreating the contents of the table when the user changes the rate they are willing to pay.

On the right, you can see the Array object's push() method creates a new entry in the rows array. The entry is an object literal, and it stores the person object and the row being created for it in the table.

rows.push({
 person: this, // person object
 $element: $row // jQuery collection
});

The people array already holds information about each person and the rates that they charge, so the object in the rows array only needs to point to the original object for that person (it does not copy it).

A jQuery object was used to create each row of the table. The objects in the rows array store a reference to each individual row of the table. There is no need to select or create the row again.

DYNAMIC FILTERING

[image: images]

1. Place the script in an IIFE (not shown in flowchart). The IIFE starts with the people array.

2. Next, four global variables are created as they are used throughout the script:
rows holds the cross-referencing array.
$min holds the input to show the minimum rate.
$max holds the input to show the maximum rate.
$table holds the table for the results.

3. makeRows() loops through each person in the people array calling an anonymous function for each object in the array. Note how person is used as a parameter name. This means that within the function, person refers to the current object in the array.

4. For each person, a new jQuery object called $row is created containing a <tr> element.

5. The person's name and rate are added in <td>s.

6. A new object with two properties is added to the rows array: person stores a reference to their object, $element stores a reference to their <tr> element.

7. appendRows() creates a new jQuery object called $tbody containing a <tbody> element.

8. It then loops through all of the objects in the rows array and adds their <tr> element to $tbody.

9. The new $tbody selection is added to the <table>.

10. update() goes through each of the objects in the rows array and checks if the rate that the person charges is more than the minimum and less than the maximum rate shown on the slider.

11. If it is, jQuery's show() method shows the row.

12. If not, jQuery's hide() method hides the row.

13. init() starts by creating the slide control.

14. Every time the slider is changed, the update() function is called again.

15. Once the slider has been set up, the makeRows(), appendRows(), update() functions are called.

16. The init() function is called (which will in turn call the other code).

FILTERING AN ARRAY

[image: images]

FILTERED IMAGE GALLERY

In this example, a gallery of images are tagged. Users click on filters to show matching images.

IMAGES ARE TAGGED

In this example, a series of photos are tagged. The tags are stored in an HTML attribute called data-tags on each of the elements. HTML5 allows you to store any data with an element using an attribute that starts with the word data-. The tags are comma-separated. (See right-hand page)

TAGGED OBJECT

The script creates an object called tagged. The script then goes through each of the images looking at its tags. Each tag is added as a property of the tagged object. The value of that property is an array holding a reference to each element that uses that tag. (See p546-p547)

FILTER BUTTONS

By looping through each of the keys on the tagged object, the buttons can automatically be generated. The tag counts come from the length of the array. Each button is given an event handler. When clicked, it filters the images and only shows those with the tag the user selected. (See p548-p549)

[image: images]

TAGGED IMAGES

[image: images]

On the right, you can see the tagged object for the HTML sample used in this example. For each new tag in the images' data-tags attribute, a property is created on the tagged object. Here it has five properties: animators, designers, filmmakers, illustrators, and photographers. The value is an array of images that use that tag.

tagged = {
 animators: [p1.jpg, p6.jpg, p9.jpg],
 designers: [p4.jpg, p6.jpg, p8.jpg]
 filmmakers: [p2.jpg, p3.jpg, p5.jpg]
 illustrators: [p1.jpg, p9.jpg]
 photographers: [p2.jpg, p3.jpg, p8.jpg]
}

PROCESSING THE TAGS

[image: images]

Here you can see how the script is set up. It loops through the images and the tagged object is given a new property for each tag. The value of each property is an array holding the images with that tag.

1. Place the script in an IIFE (not shown in flowchart).

2. The $imgs variable holds a jQuery selection containing the images.

3. The $buttons variable holds a jQuery selection holding the container for the buttons.

4. The tagged object is created.

5. Loop through each of the images stored in $imgs using jQuery's .each() method. For each one, run the same anonymous function:

6. Store the current image in a variable called img.

7. Store the tags from the current image in a variable called tags. (The tags are found in the image's data-tags attribute.)

8. If the tags variable for this image has a value:

9. Use the String object's split() method to create an array of tags (splitting them at the comma). Chaining the .forEach() method off the split() method lets you run an anonymous function for each of the elements in the array (in this case, each of the tags on the current image). For each tag:

10. Check if the tag is already a property of the tagged object.

11. If not, add it as a new property whose value is an empty array.

12. Then get the property of the tagged object that matches this tag and add the image to the array that is stored as the value of that property.

Then move onto the next tag (go back to step 10). When all of the tags for that image have been processed, move to the next image (step 5).

THE TAGGED OBJECT

[image: images]

FILTERING THE GALLERY

The filter buttons are created and added by the script. When a button is clicked, it triggers an anonymous function, which will hide and show the appropriate images for that tag.

[image: images]

1. The script lives in an IIFE (not shown in flowchart).

2. Create the button to show all images. The second parameter is an object literal that sets its properties:

3. The text on the button is set to say ‘Show All’.

4. A value of active is added to the class attribute.

5. When the user clicks on the button, an anonymous function runs. When that happens:

6. This button is stored in a jQuery object and is given a class of active.

7. Its siblings are selected, and the class of active is removed from them.

8. The .show() method is called on all images.

9. The button is then appended to the button container using the .appendTo() method. This is chained off the jQuery object that was just created.

10. Next, the other filter buttons are created. jQuery's $.each() method is used to loop through each property (or each tag) in the tagged object. The same anonymous function runs for each tag:

11. A button is created for the tag using the same technique you saw for the ‘Show All’ button.

12. The text for the button is set to the tag name, followed by the length of the array (which is the number of images that have that tag).

13. The click event on that button triggers an anonymous function:

14. This button is given a class of active.

15. active is removed from all of its siblings.

16. Then all of the images are hidden.

17. The jQuery .filter() method is used to select the images that have the specified tag. It does a similar job to the Array object's .filter() method, but it returns a jQuery collection. It can also work with an object or an element array (as shown here).

18. The .show() method is used to show the images returned by the .filter() method.

19. The new button is added to the other filter buttons using the .appendTo() method.

THE FILTER BUTTONS

[image: images]

SEARCH

Search is like filtering but you show only results that match a search term. In this example, you will see a technique known as livesearch. The alt text for the image is used for the search instead of tags.

SEARCH LOOKS IN ALT TEXT OF IMAGES

This example will use the same set of photos that you saw in the last example, but will implement a livesearch feature. As you type, the images are narrowed down to match the search criteria.

The search looks at the alt text on each image and shows only elements whose alt text contains the search term.

IT USES INDEXOF() TO FIND A MATCH

The indexOf() method of the String object is used to check for the search term. If it is not found, indexOf() returns -1. Since indexOf() is case-sensitive, it is important to convert all text (both the alt text and the search term) to lowercase (which is done using the String object's toLowerCase() function).

SEARCH A CUSTOM CACHE OBJECT

We do not want to do the case conversion for each image every time the search terms change, so an object called cache is created to store the text along with the image that uses that text.

When the user enters something into the search box, this object is checked rather than looking through each of the images.

[image: images]

SEARCHABLE IMAGES

[image: images]

For each of the images, the cache array is given a new object. The array for the HTML above would look like the one shown on the right (except where it says img, it stores a reference to the corresponding element).

When the user types in the search box, the code will look in the text property of each object, and if it finds a match, it will show the corresponding image.

cache = [
 {element: img, text: ‘rabbit’},
 {element: img, text: ‘sea’},
 {element: img, text: ‘deer’},
 {element: img, text: ‘new york street map’},
 {element: img, text: ‘trumpet player’},
 {element: img, text: ‘logo ident’},
 {element: img, text: ‘bicycle japan’},
 {element: img, text: ‘aqua logo’},
 {element: img, text: ‘ghost’}
]

SEARCH TEXT

This script can be divided into two key parts:

[image: images]

SETTING UP THE CACHE OBJECT

1. Place the script in an IIFE (not shown in flowchart).

2. The $imgs variable holds a jQuery selection containing the images.

3. $search holds search input.

4. The cache array is created.

5. Loop through each image in $imgs using .each(), and run an anonymous function on each one:

6. Use push() to add an object to the cache array representing that image.

7. The object's element property holds a reference to the element.

8. Its text property holds the alt text. Note that two methods process the text:
.trim() removes spaces from the start and end.
.toLowerCase() converts it all to lowercase.

FILTERING IMAGES WHEN USER TYPES IN SEARCH BOX

9. Declare a function called filter().

10. Store the search text in a variable called query. Use .trim() and .toLowerCase() to clean the text.

11. Loop through each object in the cache array and call the same anonymous function on each:

12. A variable called index is created and set to 0.

13. If query has a value:

14. Use indexOf() to check if the search term is in the text property of this object.
The result is stored in the index variable. If found, it will be a positive number. If not, it will be -1.

15. If the value of index is -1, set the display property of the image to none. Otherwise, set display to a blank string (showing the image). Move onto the next image (step 11).

16. Check if the browser supports the input event. (It works well in modern browsers, but is not supported in IE8 or earlier.)

17. If so, when it fires on the search box, call the filter() function.

18. Otherwise, use the input event to trigger it.

LIVESEARCH

[image: images]

The alt text of every image and the text that the user enters into the search input are cleaned using two jQuery methods. Both are used on the same selection and are chained after each other.

	METHOD
	USE

	trim()
	Removes whitespace from start or end of string

	toLowerCase()
	Converts string to lowercase letters because indexOf() is case-sensitive

SORTING

Sorting involves taking a set of values and reordering them. Computers often need detailed instructions about in order to sort data. In this section, you meet the Array object's sort() method.

When you sort an array using the sort() method, you change the order of the items it holds.

Remember that the elements in an array have an index number, so sorting can be compared to changing the index numbers of the items in the array.

By default, the sort() method orders items lexicographically. It is the same order dictionaries use, and it can lead to interesting results (see the numbers below).

To sort items in a different way, you can write a compare function (see right-hand page).

Lexicographic order is as follows:

1. Look at the first letter, and order words by the first letter.

2. If two words share the same first letter, order those words by the second letter.

3. If two words share the same first two letters, order those words by the third letter, etc.

SORTING STRINGS

Take a look at the array on the right, which contains names. When the sort() method is used upon the array, it changes the order of the names.

var names = [‘Alice’, ‘Ann’, ‘Andrew’, ‘Abe’];
names.sort();

The array is now ordered as follows:
[‘Abe’, ‘Alice’, ‘Andrew’, ‘Ann’];

SORTING NUMBERS

By default, numbers are also sorted lexicographically, and you can get some unexpected results. To get around this you would need to create a compare function (see next page).

var prices = [1, 2, 125, 19, 14, 156];
prices.sort();

The array is now ordered as follows:
[1, 125, 14, 156, 19, 2]

CHANGING ORDER USING COMPARE FUNCTIONS

If you want to change the order of the sort, you write a compare function. It compares two values at a time and returns a number.
The number it returns is then used to rearrange the items in the array.

The sort() method only ever compares two values at a time (you will see these referred to as a and b), and it determines whether value a should appear before or after value b.

Because only two values are compared at a time, the sort() method may need to compare each value in the array with several other values in the array (see diagram on the next page).

sort() can have an anonymous or a named function as a parameter. This function is called a compare function and it lets you create rules to determine whether value a should come before or after value b.

COMPARE FUNCTIONS MUST RETURN NUMBERS

A compare function should return a number. That number indicates which of the two items should come first.

[image: images]

Indicates that it should show a before b

The sort() method will determine which values it needs to compare to ensure the array is ordered correctly.

[image: images]

Indicates that the items should remain in the same order

You just write the compare function so that it returns a number that reflects the order in which you want items to appear.

[image: images]

Indicates that it should show b before a

To see the order in which the values are being compared, you can add the console.log() method to the compare function. For example: console.log(a + ‘ − ’ + b + ‘ = ’ + (b − a));

HOW SORTING WORKS

Here an array holds 5 numbers that will be sorted in ascending order. You can see how two values (a and b) are compared against each other. The compare function has rules to decide which of the two goes first.

[image: images]

It is up to the browser to decide which order to sort items in.
This illustrates the order used by Safari. Other browsers sort items in a different order.

[image: images]

Chrome compares this array in the following order: 3 - 4, 5 - 2, 4 - 2, 3 - 2, 1 - 2.
Firefox compares this array in the following order: 3 - 1, 3 - 5, 4 - 2, 5 - 2, 1 - 2, 3 - 2, 3 - 4, 5 - 4.

SORTING NUMBERS

Here are some examples of compare functions that can be used as a parameter of the sort() method.

ASCENDING NUMERICAL ORDER

To sort numbers in an ascending order, you subtract the value of the second number b from the first number a. In the table on the right, you can see examples of how two values from the array are compared.

var prices = [1, 2, 125, 2, 19, 14];
prices.sort(function(a, b) {
 return a - b;
});

[image: images]

DESCENDING NUMERICAL ORDER

To order numbers in a descending order, you subtract the value of the first number a from the second number b.

var prices = [1, 2, 125, 2, 19, 14];
prices.sort(function(a, b) {
 return b - a;
});

[image: images]

RANDOM ORDER

This will randomly return a value between -1 and 1 creating a random order for the items.

var prices = [1, 2, 125, 2, 19, 14];
prices.sort(function() {
 return 0.5 - Math.random();
});

SORTING DATES

Dates need to be converted into a Date object so that they can then be compared using < and > operators.

var holidays = [
 ‘2014-12-25’,
 ‘2014-01-01’,
 ‘2014-07-04’,
 ‘2014-11-28’
];

holidays.sort(function(a, b){
 var dateA = new Date(a);
 var dateB = new Date(b);

 return dateA - dateB
});

The array is now ordered as follows:

holidays = [
 ‘2014-01-01’,
 ‘2014-07-04’,
 ‘2014-11-28’,
 ‘2014-12-25’
]

DATES IN ASCENDING ORDER

If the dates are held as strings, as they are in the array shown on the left, the compare function needs to create a Date object from the string so that the two dates can be compared.

Once they have been converted into a Date object, JavaScript stores the date as the number of milliseconds since the 1st January 1970.

With the date stored as a number, two dates can be compared in the same way that numbers are compared on the left-hand page.

SORTING A TABLE

In this example, the contents of a table can be reordered. Each row of the table is stored in an array.
The array is then sorted when the user clicks on a header.

SORT BY HEADER

When users click on a heading, it triggers an anonymous function to sort the contents of the array (which contains the table rows). The rows are sorted in ascending order using data in that column.

Clicking the same header again will show the same column sorted in descending order.

DATA TYPES

Each column can contain one of the following types of data:

	Strings

	Time durations (mins/secs)

	Dates

If you look at the <th> elements, the type of data used is specified in an attribute called data-sort.

COMPARE FUNCTIONS

Each type of data needs a different compare function. The compare functions will be stored as three methods of an object called compare, which you create on p563:

	name() sorts strings

	duration() sorts mins/secs

	date() sorts dates

[image: images]

HTML TABLE STRUCTURE

1. The <table> element needs to carry a class attribute whose value contains sortable.

2. Table headers have an attribute called data-sort. It reflects the type data in that column.

The value of the data-sort attribute corresponds with the methods of the compare object.

[image: images]

COMPARE FUNCTIONS

[image: images]

1. Declare the compare object. It has three methods used to sort names, time durations, and dates.

THE name() METHOD

2. Add a method called name(). Like all compare functions, it should take two parameters: a and b.

3. Use a regular expression to remove the word ‘the’ from the beginning of both of the arguments that have been passed into the function (for more on this technique, see the bottom of the right-hand page).

4. If the value of a is lower than that of b:

5. Return -1 (indicating that a should come before b).

6. Otherwise, if a is greater than b, return 1. Or, if they are the same, return 0. (See bottom of page.)

THE duration() METHOD

7. Add a method called duration(). Like all compare functions, it should take two parameters: a and b.

8. Duration is stored in minutes and seconds: mm:ss. The String object's split() method splits the string at the colon, and creates an array with minutes and seconds as separate entries.

9. To get the total duration in seconds, Number() converts the strings in the arrays to numbers. The minutes are multiplied by 60 and added to the number of seconds.

10. The value of a - b is returned.

THE date() METHOD

11. Add a method called date(). Like all compare functions, it should take two parameters: a and b.

12. Create a new Date object to represent each of the arguments passed into the method.

13. Return the value of a minus b.

return a > b ? 1 : 0

A shorthand for a conditional operator is the ternary operator. It evaluates a condition and returns one of two values. The condition is shown to the left of the question mark.

The two options are shown to the right separated by a colon. If the condition returns a truthy value, the first value is returned. If the value is falsy, the value after the colon is returned.

THE COMPARE OBJECT

[image: images]

a.replace(/^the /i, ‘’);

The replace() method is used to remove any instances of The from the start of a string. replace() works on any string and it takes one argument: a regular expression (see p612). It is helpful when The is not always used in a name, e.g., for band names or film titles. The regular expression is the first parameter of replace() method.

	The string you are looking for is shown between the forward slash characters.

	The caret ^ indicates that the must be at the start of the string.

	The space after the indicates there must be a space after it.

	The i indicates that the test is case insensitive.

When a match for the regular expression is found, the second parameter specifies what should take its place. In this case it is an empty string.

SORTING COLUMNS

[image: images]

1. For each element that has a class attribute with a value of sortable, run the anonymous function.

2. Store the current <table> in $table.

3. Store the table body in $tbody.

4. Store the <th> elements in $controls.

5. Put each row in $tbody into an array called rows.

6. Add an event handler for when users click on a header. It should call an anonymous function.

7. $header stores that element in a jQuery object.

8. Store the value of that heading's data-sort attribute in an variable called order.

9. Declare a variable called column.

10. In the header the user clicked upon, if the class attribute has a value of ascending or descending, then it is already sorted by this column.

11. Toggle the value of that class attribute (so that it shows the other value ascending/descending).

12. Reverse the rows (stored in the rows array) using the reverse() method of the array.

13. Otherwise, if the row the user clicked on was not selected, add a class of ascending to the header.

14. Remove the class of ascending or descending from all other <th> elements on this table.

15. If the compare object has a method that matches the value of the data-type attribute for this column:

16. Get the column number using the index() method (it returns the index number of the element within a jQuery matched set). That value is stored in the column variable.

17. The sort() method is applied to the array of rows and will compare two rows at a time. As it compares these values:

18. The values a and b are stored in variables:
.find() gets the <td> elements for that row.
.eq() looks for the cell in the row whose index number matches the column variable.
.text() gets the text from that cell.

19. The compare object is used to compare a and b. It will use the method specified in the type variable (which was collected from the data-sort attribute in step 6).

20. Append the rows (stored in the rows array) to the table body.

SORTABLE TABLE SCRIPT

[image: images]

SUMMARY

FILTERING, SEARCHING & SORTING

	Arrays are commonly used to store a set of objects.

	Arrays have helpful methods that allow you to add, remove, filter, and sort the items they contain.

	Filtering lets you remove items and only show a subset of them based on selected criteria.

	Filters often rely on custom functions to check whether items match your criteria.

	Search lets you filter based upon data the user enters.

	Sorting allows you to reorder the items in an array.

	If you want to control the order in which items are sorted, you can use a compare function.

	To support older browsers, you can use a shim script.

 13

FORM ENHANCEMENT & VALIDATION

Forms allow you to collect information from visitors, and JavaScript can help you get the right information from them.

Since JavaScript was created, it has been used to enhance and validate forms. Enhancements make forms easier to use. Validation checks whether the user has provided the right information before submitting the form (if not, it provides feedback to the user). This chapter is divided into the following three sections:

FORM ENHANCEMENT

This section features many examples of form enhancement. Each one introduces the different properties and methods you can use when working with form elements.

HTML5 FORM ELEMENTS

HTML5 contains validation features that do not use JavaScript. This section addresses ways in which you can offer validation to old and new browsers in a consistent way.

FORM VALIDATION

The final, and longest, example in the book shows a script that validates (and enhances) the registration form that you can see on the right-hand page. It has over 250 lines of code.

The first section of this chapter also drops jQuery in favor of plain JavaScript, because you should not always rely upon jQuery (especially for scripts that use little of its functionality).

[image: images]

HELPER FUNCTIONS

The first section of this chapter uses plain JavaScript, no jQuery. We will create our own JavaScript file to handle cross-browser issues, it will contain one helper function to create events.

Forms use a lot of event handlers and (as you saw in Chapter 6) IE5-8 used a different event model than other browsers. You can use jQuery to deal with cross-browser event handling. But, if you do not want to include the entire jQuery script just to handle events in older version of IE, then you need to write your own fallback code to handle the events.

Instead of writing the same fallback code every time you need an event handler, you can write the fallback code once in a helper function, and then call that function every time you need to add an event handler to a page.

On the right-hand page you can see a function called addEvent(). It lives in a file called utilities.js. Once that file has been included in the HTML page, any scripts included after it will be able to use this function to create cross-browser event handler:

[image: images]

The function takes three parameters:
i) el is a DOM node representing the element that the event will be added to or removed from.
ii) event is the type of event being listened for.
iii) callback is the function that is to be run when the event is triggered on that element.

The utilities.js file on the website also has a method to remove events.

If you look inside the addEvent() method on the right-hand page, a conditional statement checks whether the browser supports addEventListener(). If it does, a standard event listener will be added. If not, then the IE fallback will be created.

The fallback addresses three points:

	It uses IE's the attachEvent() method.

	In IE5-8, the event object is not automatically passed into the event-handling function (and is not available via the this keyword) see p264. Instead it is available on the window object. So the code must pass the event object into the event handler as a parameter.

	When you pass parameters to an event-handling function, the call must be wrapped in an anonymous function see p256.

To achieve this, the fallback adds two methods to the element the event handler will be placed upon (see steps 5 and 6 on the right-hand page). It then uses IE's attachEvent() method to add the event handler code to the element.

The functions demonstrate two new techniques:

	Adding new methods to DOM nodes: You can add methods to DOM nodes because they are just objects (that represent elements).

	Creating method names using a variable: Square brackets can be used to set a property/method, their content is evaluated into a string.

UTILITIES FILE

Here, you can see the addEvent() function that will be used to create all of the event handlers in this chapter. It lives in a file called utilities.js.

These reusable functions are often referred to as helper functions. As you write more JavaScript, you are increasingly likely to create this type of function.

[image: images]

1. The addEvent() function is declared with three parameters: element, event type, callback function.

2. A conditional statement checks if the element supports the addEventListener() method.

3. If it does, then addEventListener() is used.

4. If not, the fallback code will run instead.

The fallback must add two methods to the element the event handler will be placed upon. It then uses Internet Explorer's attachEvent() method to call them when the event occurs on that element.

5. The first method added to the element is the code that should run when the event occurs on this element (it was the third parameter of the function).

6. The second method calls the method from the previous step. It is needed in order to pass the event object to the function in step 5.

7. The attachEvent() method is used to listen for the specified event, on the specified element. When the event fires, it calls the method that it added in step 6, which in turn calls the method in step 5 using the correct reference to the event object.

In steps 5 and 6, square bracket notation is used to add a method name to an element:

[image: images]

i) The DOM node is stored in el. The square brackets add the method name to that node. That method name must be unique to that element, so it is created using three pieces of information.

ii) The method names are made up of:

	The letter e (used for the first method in step 5 but not used in step 6)

	The event type (e.g., click, blur, mouseover)

	The code from the callback function

In the code on the right-hand page, the value of this method is the callback function. (This could lead to a long method name, but it serves the purpose.) This function is based on one by John Resig, who created jQuery (http://ejohn.org/projects/flexible-javascript-events/).

THE FORM ELEMENT

DOM nodes for form controls have different properties, methods, and events than some of the other elements you have met so far. Here are some you should note for the <form> element.

	PROPERTY
	DESCRIPTION

	action
	The URL the form is submitted to

	method
	If it is to be sent via GET or POST

	name
	Rarely used, more common to select a form by the value of its id attribute

	elements
	A collection of the elements in the form that users can interact with. They can be accessed via index numbers or the values of their name attributes.

The DOM methods you saw in Chapter 5, such as getElementById(), getElementsByTagName(), and querySelector(), are the most popular techniques for accessing both the <form> element and the form controls within any form. However, the document object also has something called the forms collection. The forms collection holds a reference to each of the <form> elements that appear on a page.

Each item in a collection is given an index number (a number starting at 0, like an array). This would access the second form using its index number:
document.forms[1];

You can also access a form using the value of its name attribute. The following would select a form whose name attribute has a value of login:
document.forms.login

	METHOD
	DESCRIPTION

	submit()
	This has the same effect as clicking the submit button on a form

	reset()
	Resets the form to the initial values it had when the page loaded

	EVENT
	DESCRIPTION

	submit
	Fires when the form is submitted

	reset
	Fires when the form is reset

Each <form> element in the page also has an elements collection. It holds all of the form controls within that form. Each item in the elements collection can also be accessed by index number or by the value of its name attribute.

The following would access the second form on the page and then select the first form control within it:
document.forms[1].elements[0];

The following would access the second form on the page, then select the element whose name attribute had a value of password from that form:
document.forms[1].elements.password;

Note: index numbers in a collection of elements can change if the markup of a page is altered. So, use of index numbers ties a script to the HTML markup (- it does not achieve a separation of concerns).

FORM CONTROLS

Each type of form control uses a different combination of the properties, methods, and events shown below. Note that the methods can be used to simulate how a user would interact with the form controls.

	PROPERTY
	DESCRIPTION

	value
	In a text input, it is the text the user entered; otherwise, it is the value of the value attribute

	type
	When a form control has been created using the <input> element, this defines the type of the form element (e.g., text, password, radio, checkbox)

	name
	Gets or sets the value of the name attribute

	defaultValue
	The initial value of a text box or text area when the page is rendered

	form
	The form that the control belongs to

	disabled
	Disables the <form> element

	checked
	Indicates which checkbox or radio buttons have been checked. This property is a Boolean; in JavaScript it will have a value of true if checked

	defaultChecked
	Whether the checkbox or radio button was checked or not when the page loaded (Boolean)

	selected
	Indicates that an item from a select box has been selected (Boolean - true if selected)

	METHOD
	DESCRIPTION

	focus()
	Gives an element focus

	blur()
	Removes focus from an element

	select()
	Selects and highlights text content of an element, (e.g., text inputs, text areas, and passwords)

	click()
	Triggers a click event upon buttons, checkboxes, and file upload Also triggers a submit event on a submit button, and the reset event on a reset button

	EVENT
	DESCRIPTION

	blur
	When the user leaves a field

	focus
	When the user enters a field

	click
	When the user clicks on an element

	change
	When the value of an element changes

	input
	When the value of an <input> or <textarea> element changes

	keydown, keyup, keypress
	When the user interacts with a keyboard

SUBMITTING FORMS

In this example, a basic login form lets users enter a username and password. When the user submits the form, a welcome message will replace the form. On the right-hand page you can see both the HTML and the JavaScript for this example.

[image: images]

1. Place the script in an Immediately Invoked Function Expression (IIFE see p97). (This is not shown in the flowchart.)

2. A variable called form is created and it is set to hold the <form> element. It is used in the event listener in the next line of code.

3. An event listener triggers an anonymous function when the form is submitted. Note how this is set using the addEvent() function that was created in the utilities.js file that you saw on p571.

4. To prevent the form being sent (and to allow this example to show a message to the user) the preventDefault() method is used on the form.

5. The collection of elements in this form is stored in a variable called elements.

6. To get the username, first select the username input from the elements collection using the value of its name attribute. Then, to get the text the user entered, the value property of that element is used.

7. A welcome message is created and stored in a variable called msg; this message will incorporate the username that the visitor entered.

8. The message replaces the form within the HTML.

In the HTML page, the utilities.js file you saw on p571 is included before the submit-event.js script because its addEvent() function is used to create the event handlers for this example. utilities.js is included for all examples in this section.

[image: images]

The event listener waits for the submit event on the form (rather than a click on the submit button) because the form can be submitted in other ways than clicking on the submit button. For example, the user might press the Enter key.

THE SUBMIT EVENT & GETTING FORM VALUES

[image: images]

[image: images]

When selecting a DOM node, if you are likely to use it again, it should be cached. On the right, you can see a variation of the above code, where the username and the main element have both been stored in variables outside of the event listener. If the user had to resubmit the form, the browser would not have to make the same selections again.

var form = document.getElementById(‘login’);
var elements = form.elements;
var elUsername = elements.username;
var elMain = document.getElementById(‘main’);
addEvent(form, ‘submit’, function(e) {
 e.preventDefault();
 var msg = ‘Welcome ’ + elUsername.value;
 elMain.textContent = msg;
});

CHANGING TYPE OF INPUT

This example adds a checkbox under the password input. If the user checks that box, their password will become visible. It works by using JavaScript to change the type property of the input from password to text. (The type property in the DOM corresponds to type attribute in the HTML.)

Changing the type property causes an error in IE8 (and earlier), so this code is placed in a try… catch statement. If the browser detects an error, the script continues to run the second code block.

[image: images]

1. Place the script in an IIFE (not shown in flowchart).

2. Put password input and checkbox in variables.

3. An event listener triggers an anonymous function when the show password checkbox is changed.

4. The target of the event (the checkbox) is stored in a variable called target. As you saw in Chapter 6, e.target will retrieve this for most browsers. e.srcElement is only used for old versions of IE.

5. A try… catch statement checks if an error is caused when the type attribute is updated.

6. If the checkbox is selected:

7. The value of the password input's type attribute is set to text.

8. Otherwise, it is set to password.

9. If trying to change the type causes an error, the catch clause runs another code block instead.

10. It shows a message to tell the user.

[image: images]

As you saw in Chapter 10, an error can stop a script from running. If you know something may cause an error for some browsers, placing that code in a try… catch statement lets the interpreter continue with an alternative set of code.

SHOWING A PASSWORD

[image: images]

[image: images]

SUBMIT BUTTONS

This script disables the submit button when:

	The script first loads. The change event then checks when the password changes and enables submit if the password is given a value.

	The form has been submitted (to prevent the form being sent multiple times).

[image: images]

The button is disabled using the disabled property. It corresponds with the HTML disabled attribute, and can be used to disable any form elements that a user can interact with. A value of true disables the button; false lets the user click on it.

1. Place the script in an IIFE (not shown in flowchart).

2. Store the form, password input, and submit button in variables.

3. The submitted variable is known as a flag; it remembers if the form has been submitted yet.

4. The submit button is disabled at the start of the script (rather than in the HTML) so that the form can still be used if a visitor has JavaScript disabled.

5. An event listener waits for the input event on the password input; it triggers an anonymous function.

6. Store the target of the event in target.

7. If the password input has a value, the submit button is enabled, and (8) its style updated.

9. A second event listener checks for when the user submits the form (and runs an anonymous function).

10. If the submit button is disabled, or the form has been submitted, the subsequent code block is run.

11. The default action of the form (submitting) is prevented, and return leaves the function.

12. If step 11 did not run, the form is submitted, the submit button disabled, the submitted variable updated with a value of true, and its class updated.

[image: images]

DISABLE SUBMIT BUTTON

[image: images]

[image: images]

CHECKBOXES

This example asks users about their interests. It has an option to select or deselect all of the checkboxes. It has two event handlers:

	The first fires when the all checkbox is selected; it loops through the options, updating them.

	The second fires when the options change; if one is deselected, the all option must be deselected.

[image: images]

You can use the change event to detect when the value of a checkbox, radio button, or select box changes. Here, it is used to tell when the user selects / deselects a checkbox. The checkboxes can be updated using the checked property, which corresponds with HTML's checked attribute.

1. Place the script in an IIFE (not shown in flowchart).

2. The form, all of the form elements, the options, and the all checkbox are stored in variables.

3. The updateAll() function is declared.

4. A loop runs through each of the options.

5. For each one, the checked property is set to the same value as the checked property on the all option.

6. An event listener waits for the user to click on the all checkbox, which fires a change event and calls the updateAll() function.

7. The clearAllOption() function is defined.

8. It gets the target of the option the user clicked on.

9. If that option is deselected, then the all option is also deselected (as they are no longer all selected).

10. A loop runs through the options, adding an event listener. When the change event happens on any of them, clearAllOption() is called.

[image: images]

SELECT ALL CHECKBOXES

[image: images]

[image: images]

RADIO BUTTONS

This example lets users say how they heard about a website. Every time the user selects a radio button, the code checks if the user selected the option that says other, and one of two things happens:

	If other is selected, a text input is shown so they can add further detail.

	If the first two options are selected, the text box is hidden and its value is emptied.

[image: images]

1. Place the script in an IIFE (not shown in flowchart).

2. The code starts out by setting up variables to hold the form, all radio buttons, the radio button for the other option, and the text input.

3. The text input is hidden. This uses JavaScript to update the class attribute so that the form still works if the user has JavaScript disabled.

4. Using a for loop, an event listener is added to each of the radio buttons. When one of them is clicked, the radioChanged() function is called.

5. The radioChanged() function is declared.

6. If other is checked, the value of the hide variable is set to be a blank string, otherwise it is set to hide.

7. The hide variable is, in turn, used to set the value of the class attribute on the text input. If it is blank, the other option is shown; if it has a value of hide, the text input is hidden.

8. If the hide attribute has a value of hide, then the contents of the text input are emptied (so that the text input is blank if it is shown).

[image: images]

[image: images]

[image: images]

SELECT BOXES

The <select> element is more complex than the other form controls. Its DOM node has a number of extra properties and methods. Its <option> elements contain the values a user can select.

This example features two select boxes. When the user selects an option from the first select box, the contents of the second select box are updated with corresponding options.

In the first select box, users can choose to rent a camera or a projector. When they make their choice, a list of options are shown in the second select box. Because this example is a bit more complex than the ones you have seen so far in this chapter, the HTML and screen shots are shown to the right, and the JavaScript file is discussed on p586-p587.

When the user selects an option from the dropdown list, the change event fires. This event is often used to trigger scripts when the user changes the value of a select box.

The <select> element also has some extra properties and methods that are specific to it; these are shown in the tables below.

If you want to work with the individual options the user can select from, a collection of <option> elements is available.

	PROPERTY
	DESCRIPTION

	options
	A collection of all the <option> elements

	selectedIndex
	Index number of the option that is currently option

	length
	Number of options

	multiple
	Allows users to select multiple options from the select box (Rarely used because the user-experience is not very good)

	selectedOptions
	A collection of all the selected <option> elements

	METHOD
	DESCRIPTION

	add(option, before)
	Adds an item to the list:
The first parameter is the new option; the second is the element it should go before If no value is given, the item will be added to the end of the options

	remove(index)
	Removes an item from the list:
Has only one parameter - the index number of the option to be removed

[image: images]

[image: images]

1. Place the script in an IIFE (not shown in flowchart).

2. Variables hold the two select boxes.

3. Two objects are created; each one holds options used to populate the second select box (one has types of cameras, the other has types of projectors).

4. When the user changes the first select box, an event listener triggers an anonymous function.

5. The anonymous function checks if the first select box has a value of choose.

6. If so, the second select box is updated with just one option, which tells the user to select a type.

7. No further processing is needed, and the return keyword exits the anonymous function (until the user changes the first select box again).

8. If a type of equipment has been selected, the anonymous function continues to run, and a models variable is created. It will store one of the objects defined in step 3 (cameras or projectors). This correct object is retrieved using the getModels() function declared at the end of the script (9+10). The function takes one parameter this.value, which corresponds to the value from the option that was selected in first select box.

9. Inside the getModels() function, an if statement checks if the value passed in was cameras; if so, it returns the cameras object.

10. If not, it continues to run, checking to see if the value was projectors, and if so, it returns the projectors object.

11. A variable called options is created. It will hold all the <option> elements for the second select box. When this variable is created the first <option> is added to it; it tells users to choose a model.

12. A for loop goes through the contents of the object that was placed in the models variable in step (8-10). Inside the loop, key refers to the individual items in the object.

13. Another <option> element is created for every item in the object. Its value attribute uses the property name from the object. The content that sits between the <option> tags is that property's value.

14. The options are then added to the second select box using the innerHTML property.

[image: images]

[image: images]

TEXTAREA

In this example, users can enter a biography of up to 140 characters. When the cursor is in the textarea, a element will be shown with a count of how many characters the user has remaining. When the textarea loses focus, this message is hidden.

[image: images]

1. Place the script in an IIFE (not shown in flowchart).

2. The script sets up two variables to hold: a reference to the <textarea> element and a reference to the that holds the message.

3. Two event listeners monitor the <textarea>. The first checks for when the element gains focus; the second checks for a input event. Both events trigger a function called updateCounter() (6-11) The input event does not work in IE8, but you can use keyup to support older browsers.

4. A third event listener triggers an anonymous function when the user leaves the <textarea>.

5. If the number of characters is less than or equal to 140 characters, the length of the bio is okay, and it hides the message (because it is not needed when the user is not interacting with the element).

6. The updateCounter() function is declared.

7. It gets a reference to the element that called it.

8. A variable called count holds the number of characters left to use (it does this by subtracting the number of characters used from 140).

9. if… else statements are used to set the CSS class for the element that holds the message (these can also show the message if it was hidden).

10. A variable called charMsg is created to store the message that will be shown to the user.

11. The message is added to the page.

[image: images]

CHARACTER COUNTER

[image: images]

[image: images]

HTML5 ELEMENTS & ATTRIBUTES

HTML5 adds form elements and attributes to perform tasks that had previously been performed by JavaScript. However, their appearance can vary a lot between different browsers (especially their error messages).

SEARCH

<input type=“search”
 placeholder=“Search…”
 autofocus>

[image: images]

Safari rounds the corners of its search inputs to match the user interface of the operating system. When you enter text, Safari shows a cross icon which, when clicked or tapped, allows the user to clear the text from the field. Other browsers show an input like any other text input.

EMAIL, URL, PHONE

<input type=“email”>
<input type=“url”>
<input type=“telephone”>

[image: images]

Email, URL, and phone inputs all look like text input fields, but the browser performs checks on the data entered into these inputs to see if it is in the right format to be an email address, URL, or phone number, then shows a message if it is not.

NUMBER

<input type=“number”
 min=“0”
 max=“10”
 step=“2”
 value=“6”>

[image: images]

Number inputs sometimes add arrows to increase or decrease the number specified (also known as spinboxes). You can specify a minimum and a maximum value, a step (or increment), and an initial value. The browser checks that the user entered a number, and shows a message if a number was not entered.

	ATTRIBUTE
	DESCRIPTION

	autofocus
	Gives focus to this element when the page is loaded

	placeholder
	Content of this attribute is shown in the <input> element as a hint (see p594)

	required
	Checks that the field has a value - could be text entered or an option selected (see p606)

	min
	Minimum permitted number

	max
	Maximum permitted number

	step
	Intervals by which numbers should increase or decrease

	value
	Default value for a number when the control first loads on the page

	autocomplete
	On by default: shows list of past entries (disable for credit card numbers / sensitive data)

	pattern
	Lets you to specify a regular expression to validate a value (see p612)

	novalidate
	Used on the <form> element to disable the HTML5 built-in form validation (see p604)

RANGE

<input type=“range”
 min=“0”
 max=“10”
 step=“2”
 value=“6”>

[image: images]

The range input offers another way to specify a number - this time the control shows a slider. As with the spinbox, you can specify a minimum and a maximum value, a step, and an initial value.

COLOR PICKER

<input type=“color”>

[image: images]

At the time of writing, Chrome and Opera are the only browsers to implement a color input. It allows users to specify a color. When they click on the control, the browser will usually show the operating system's default color picker (except for Linux, which offers a more basic palette). It inserts a hex color value based on the user's selection.

DATE

<input type=“date”> (below)
<input type=“month”>
<input type=“week”>
<input type=“time”>
<input type=“datetime”>

[image: images]

There are several different date inputs available. At the time of writing, Chrome was the only browser to have implemented a date picker.

SUPPORT & STYLING

HTML5 form elements are not supported in all browsers and, when they are, the inputs and error messages can look very different.

DESKTOP BROWSERS

At the time of writing, many developers were still using JavaScript instead of these new HTML5 features because:

	Older browsers do not support the new input types (they just show a text box in their place).

	Different browsers present the elements and their error messages in very different ways (and designers often want to give users a consistent experience across browsers).

Below, you can see how the error messages look very different in two of the main browsers.

MOBILE

On mobile devices the situation is very different, as most modern mobile browsers:

	Support the main HTML5 elements

	Show a keyboard that's adapted to the type: email brings up a keyboard with the @ sign number type brings up a number keyboard

	Give helpful versions of the date picker

Therefore, in mobile browsers, the new HTML5 types and elements make forms more accessible and usable for your visitors.

[image: images]

CURRENT APPROACHES

Until more visitors' browsers support these new features, and do so in a consistent way, developers will think carefully about how they use them.

POLYFILLS

A polyfill is a script that provides functionality you may expect a browser to support by default. For example, because older browsers do not support the new HTML5 elements, polyfills can be used to implement a similar experience / functionality in those older browsers. Typically this is achieved using JavaScript or a jQuery plugin.

Polyfills often come with CSS files that are used to style the functionality the script adds.

You can find a list of polyfills for various features here:
http://html5please.com

There is an example of how to use a polyfill on p594, where you see how to get the HTML5 placeholder attribute to show up in older browsers.

FEATURE DETECTION

Feature detection means checking whether a browser supports a feature or not. You can then decide what to do if a feature is, or is not, supported. On p415 you learned about a script called modernizr.js, which tests for browser features.

Commonly, if a feature is not supported, a polyfill script will be loaded to emulate that feature. To save loading the polyfill script into browsers that do not need it, Modernizr includes a conditional loader; it will only load a script if the test indicates that the script is needed.

Another popular conditional loader is Require.js (available from http://requirejs.org), but it is a bit more complex when you are first starting out because it offers many other features.

CONSISTENCY

Many designers and developers want to control the appearance of form controls and error messages to give a consistent experience across all browsers. (Consistency in error messages is considered important because different styles of error messages can confuse users.)

Therefore, the long example used at the end of this chapter will disable HTML5 validation and try to use JavaScript validation as its first choice. (HTML5 validation is only shown if the user does not have JavaScript enabled; it is used as a fallback in modern browsers.)

In that example, you also see jQuery UI used to ensure that the date picker is consistent across all devices, with as little code as possible.

PLACEHOLDER FALLBACK

The HTML5 placeholder attribute lets you put words in text inputs (to replace labels or to add hints about what to enter). When the input gains focus and the user starts typing, the text disappears. But it only works in modern browsers, so this script ensures that the user sees placeholder text in older browsers too. It is a basic example of a polyfill.

[image: images]

1. Place the script in an IIFE (not shown in flowchart).

2. Check if the browser supports the HTML5 placeholder attribute. If it does, there is no need for the fallback. Use return to exit the function.

3. Find out how many forms are on the page using the length property of the forms collection.

4. Loop through each <form> element on the page and call showPlaceholder() for each one, passing it the collection of elements in that form.

5. The showPlaceholder() function is declared.

6. A for loop runs through elements in the collection.

7. An if statement checks each element to see if the element has a placeholder attribute with a value.

8. If there is no placeholder attribute, continue tells it to go on to the next element. Otherwise, it:

9. Changes the text color to gray, and sets the value of the element to be the placeholder text.

10. An event listener triggers an anonymous function when the element gains focus.

11. If the current value of the element matches the placeholder text, the value is cleared (and color changed to black).

12. An event listener triggers an anonymous function when the element loses focus.

13. If the input is empty, the placeholder text is added back in (and its color changed to gray).

[image: images]

PLACEHOLDER POLYFILL

[image: images]

There are a few differences from the HTML5's placeholder attribute: e.g., if the user deletes their text, the placeholder only returns when the user leaves the input (not immediately - as with some browsers). It will not submit text that has the same value as the placeholder. Placeholder values may be saved by autocomplete.

POLYFILL USING MODERNIZR & YEPNOPE

You met Modernizr in Chapter 9, here you can see it used with a conditional loader so that it only loads a fallback script if one is needed.

Modernizr lets you test whether or not a browser and device support certain features; this is known as feature detection. You can then take different courses of action depending on whether or not the features were supported. For example, if an older browser does not support a feature, you might decide to use a polyfill.

Modernizr is sometimes included in the <head> of an HTML page when it needs to perform checks before the page has loaded (for example, some HTML5 / CSS3 polyfills must be loaded before the page).

MODERNIZR ON ITS OWN

Each feature you test using Modernizr becomes a property of the Modernizr object. If the feature is supported, the property contains true; if not, it contains false. You then use the properties of the Modernizr object in a conditional statement as shown below. Here, if Modernizr's cssanimations property does not return true the code in the curly braces runs.

if (!Modernizr.cssanimations) {
 // CSS animations are not supported
 // Use jQuery animation instead
}

Rather than loading a polyfill script for everyone who visits your site (even if they do not need to use it), you can use something called a conditional loader, which will let you load different files depending on whether a condition returns true or false. Modernizr is commonly used with a conditional loader called YepNope.js, so polyfills are only loaded if needed.

Once you have included the YepNope script in your page, you can call the yepnope() function. It uses object literal syntax to indicate a condition to test, and then what files to load depending on whether the condition returned true or false.

MODERNIZR + YEPNOPE

YepNope is passed an object literal, which usually contains a minimum of three properties:

	test is the a condition being checked. Here Modernizr is used to check if cssanimations are supported.

	yep is the file to load if the condition returns true.

	nope is the file to load if the condition returns false (here it loads two files using array syntax).

yepnope({
 test: Modernizr.cssanimations,
 yep: ‘css/animations.css’,
 nope: [‘js/jquery.js’, ‘js/animate.js’]
});

CONDITIONAL LOADING OF A POLYFILL

[image: images]

[image: images]

[image: images]

This example tests if the browser supports the <input> element using a type attribute with a value of number. Both Modernizr and YepNope are included in the <head> of the page so that the fallback is shown correctly.

The yepnope() function takes an object literal as a parameter. It's properties include:

	test: the feature you are checking for. In this case it is checking Modernizr to see if the number input is supported.

	yep: not used in this example can load files if the feature is supported.

	nope: what to do if feature is not supported (you can load multiple files in an array).

	complete: can run a function when the checks are complete, and any necessary files have loaded. Here it adds a message to the console to demonstrate how it works.

Note that Modernizr stores the value of the <input> element's type attribute, in a child object called inputtypes. E.g., to check if the HTML5 date selector is supported, you use:
Modernizr.inputtypes.date (not Modernizr.date).

FORM VALIDATION

The final section of this chapter uses one big script to discuss the topic of form validation. It helps users give you responses in the format you need. (The example also has some form enhancements, too.)

Validation is the process of checking whether a value meets certain rules (for example, that a password has a minimum number of characters). It lets you tell users if there is a problem with the values they entered so that they can correct the form before they resubmit it. This has three key advantages:

	You are more likely to get the information you need in a format you can use.

	It is faster to check values in the browser than it is to send data to the server to be checked.

	It saves resources on the server.

In this section you see how to check the values a user enters into a form. These checks happen when the form is submitted. To do this users could press submit or use the Enter on the keyboard, so the validation process will be triggered by the submit event (not the click event of a submit button).

We will look at validation using one long example. You can see the form below, and the HTML is shown on the right. It uses HTML5 form controls, but the validation is going to be done using JavaScript to make sure that the experience is consistent across all browsers (even if they do support HTML5).

[image: images]

FORM HTML

This example uses HTML5 markup, but validation is performed using JavaScript (not HTML5 validation).

Due to limited space, the code below only shows the form inputs (not the markup for the columns).

[image: images]

VALIDATION OVERVIEW

This example has over 250 lines of code and will take 22 pages to explain. The script starts by looping through each element on the page performing two generic checks on every form control.

GENERIC CHECKS

First, the code loops through every element in the form and performs two types of generic checks. They are generic checks because they would work on any element, and would work with any form.

1. Does the element have the required attribute? If so, does it have a value?

2. Does the value match with the type attribute? E.g., Does an email input hold an email address?

CHECKING EACH ELEMENT

To work through each element in the form, the script makes use the form's elements collection (which holds a reference to each form control). The collection is stored in a variable called elements. In this example, the elements collection will hold the following form controls. The right-hand column tells you which elements are required to have a value:

[image: images]

[image: images]

Some developers proactively cache form elements in variables in case validation fails. This is a good idea, but to keep this (already very long) example simpler, the nodes for the form elements are not cached.

If you have not already done so, it would be helpful to download the code for this example from the website, javascriptbook.com, and have it ready when you are reading through the following pages.

Once the generic checks have been performed, the script then makes some checks that apply to individual elements on the form. Some of these checks apply only to this specific form.

[image: images]

CUSTOM VALIDATION TASKS

Next the code performs checks that correspond with specific elements in the form (not all elements):

	Do the passwords match?

	Is the bio in the textarea under 140 characters?

	If the user is less than 13 years old, is the parental consent checkbox selected?

These checks are specific to this form and only apply to selected elements in the form (not all of them).

TRACKING VALID ELEMENTS

To keep track of errors, an object called valid is created. As the code loops through each element performing the generic checks, a property is added to the valid object for each element:

	The property name is the value of its id attribute.

	The value is a Boolean. Whenever an error is found on an element, this value is set to false.

	PROPERTIES OF THE VALID OBJECT

	valid.name

	valid.email

	valid.password

	valid.conf-password

	valid.birthday

	valid.parents-consent

	valid.bio

DEALING WITH ERRORS

If there are errors, the script needs to prevent the form being submitted and tell the user what they need to do in order to correct their answers.

As the script checks each element, if an error is found, two things happen:

	The corresponding property of the valid object is updated to indicate the content is not valid.

	A function called setErrorMessage() is called. This function uses jQuery's .data() method, which allows you to store data with the element. So the error message is stored in memory along with the form element that has the problem.

After each element has been checked, then error messages can be shown using showErrorMessage(). It retrieves the error message and puts it in a element, which is added after the form control.

Each time the user tries to submit the form, if an error was not found on an element it is important to remove any error messages from that element. Consider the following scenario:
a) A user filled out a form with more than one error.
b) This triggered multiple error messages.
c) The user fixes one problem, so its corresponding message must be removed, while error message(s) for problems that have not been fixed must remain visible.

Therefore, when each of the elements is looped through, either an error message is set, or the error message is removed.

[image: images]

Above you can see a representation of the form and its elements collection. There was a problem with the email input, so the .data() method has stored a key/value pair with that element.

This is how the setErrorMessage() function will store the error messages to show to the user. If the error is fixed, then the error value is cleared (and the element with the error message removed).

SUBMITTING THE FORM

Before sending the form, the script checks whether there were any errors. If there were, the script stops the file from being submitted.

In order to check whether any errors were found, a variable called isFormValid is created and is given a value of true. The script then loops through each property of the valid object, and if there was an error (if any property of that object has a value of false), then there is an error in the form and the isFormValid variable is also set to false.

So, isFormValid is being used as a flag (you can think of it being like a master switch) if an error is found, it is turned off. At the end of the script, if isFormValid is false then an error must have been found and the form should not be submitted (using the preventDefault() method).

It is important to check and process all of the elements before deciding whether to submit the form so that you can show all of the relevant error messages in one go.

If every value has been checked, the user can be shown all of the things they have to amend before re-submitting the form.

If the form only showed the first error it came across, and stopped, the user would only see one error each time they submitted the form. This could soon become frustrating for the user if they were to keep trying to submit the form and see new errors.

[image: images]

CODE OVERVIEW

On the right is an outline of the validation code, split into four sections. On line 3, an anonymous function is called when the form is submitted. It orchestrates the validation, in turn calling other functions (not all of which are shown on the right-hand page, see further pages for more).

A: SET UP THE SCRIPT

1. The code lives inside an IIFE (creating functionlevel scope).

2. This script uses JavaScript validation to ensure that error messages look the same on all browsers, so HTML5 validation is turned off by setting the noValidate property of the form to true.

3. When the user submits the form, an anonymous function is run (this contains the validation code).

4. elements holds a collection of all form elements.

5. valid is the object that keeps track of whether or not each form control is valid. Each form control is added as a property of the valid object.

6. isValid is a flag that is re-used to check whether individual elements are valid.

7. isFormValid is a flag that is used as a master switch to check whether the entire form is valid.

B: PERFORM GENERIC CHECKS

8. The code loops through each form control.

9. It performs two generic checks on each one:

i) Is the element required? If so, does it have a value? Uses validateRequired(). See p606.

ii) Does the value correspond with the type of data it should hold? Uses validateTypes(). See p610.

If either of these functions does not return true, then isValid is set to false.

10. An if…else statement checks if that element passed the tests (by checking if isValid is false).

11. If the control is not valid, showErrorMessage() shows an error message to the user. See p609.

12. If it is valid, removeErrorMessage() removes any errors associated with that element.

13. The value of the element's id attribute is added as a property valid object; its value is whether or not the element was valid.

C: PERFORM CUSTOM VALIDATION

14. After the code has looped through every element on the form, the custom validation can occur. There are three types of custom validation occurring (each one uses its own function):
i) Is the bio too long? See p615.
ii) Do passwords match?
iii) Is user old enough to join on own? If not, is the parental approval checkbox selected? See p617.

15. If an element fails one of the custom validation checks, showErrorMessage() will be called, and the corresponding property in the valid object will be set to false.

16. If the element passes the check, removeErrorMessage() is called for that element.

D: DID THE FORM PASS VALIDATION?

The valid object now has a property for each element, and the value of that property states whether or not the element was valid or not.

17. The code loops through each property in the valid object.

18. An if statement checks to see if the element was not valid.

19. If it was not valid, set isFormValid to false and stop the loop.

20. Otherwise, isFormValid is set to true.

21. Finally, having looped through the valid object, if isFormValid is not true, the preventDefault() method prevents the form being submitted. Otherwise, it is sent.

[image: images]

REQUIRED FORM ELEMENTS

The HTML5 required attribute indicates a field must have a value. Our validateRequired() function will first check for the attribute. If present, it then checks whether or not it has a value.

validateRequired() is called for each element individually (see step 9, p605). Its one parameter is the element it is checking.

In turn, it calls upon three other named functions.
i) isRequired() checks for the required attribute.

ii) isEmpty() can check if the element has a value.
iii) setErrorMessage() sets error messages if there are problems.

[image: images]

A: DOES IT HAVE A REQUIRED ATTRIBUTE?

1. An if statement uses a function called isRequired() to check whether the element carries the required attribute. You can see the isRequired() function on the right-hand page. If the attribute is present, the subsequent code block is run.

6. If not, the code skips to step to step 6 to say this element is OK.

B: IF SO, DOES IT HAVE A VALUE?

If the field is required, the next step is to check whether or not it has a value. This is done using a function called isEmpty(), also shown on the right-hand page.

2. The result from isEmpty() is stored in a variable called valid. If it is not empty, the valid variable will hold a value of true. If it is empty, it holds false.

C: SHOULD AN ERROR MESSAGE BE SET?

3. An if statement checks if the valid variable is not true.

4. If it is not true, an error message is set using the setErrorMessage() function, which you meet on p608.

5. The valid variable is returned on the next line, and that is where this function ends.

validateRequired() uses two functions to perform checks:
1: isRequired() checks whether the element has a required attribute.
2: isEmpty() checks whether the element has a value.

isRequired()

The isRequired() function takes an element as a parameter and checks if the required attribute is present on that element. It returns a Boolean.

There are two types of check: The first, in blue, is for browsers that support the HTML5 required attribute. The one in orange is for older browsers.

To check if the required attribute is present, the typeof operator is used. It checks what datatype the browser thinks the required attribute is.

[image: image]

MODERN BROWSERS

Modern browsers know the required property is a Boolean, so the first part of this check tells us if it is a modern browser. The second part checks if it is present on this element. If the attribute is present, it will evaluate to true. If not, it returns undefined, which is considered a falsy value.

isEmpty()

The isEmpty() function (below) takes an element as a parameter and checks to see if it has a value. As with isRequired(), two checks are used to handle both new and older browsers.

OLDER BROWSERS

Browsers that do not know HTML5 can still tell whether or not an HTML5 attribute is present on an element. In those browsers, if the required attribute is present, it gets treated as a string, so the condition would evaluate to true. If not, the type would be undefined, which is falsy.

ALL BROWSERS

The first check looks to see if the element does not have a value. If it has a value, the function should return false. If it is empty, it will return true.

WHAT IS VALIDATED

It is important to note that the required attribute only indicates that a value is required. It doesn't stipulate how long the value should be, nor does it perform any other kind of validation. Specific checks, such as these, would have to be added in the validateTypes() function or the script's custom validation section.

OLDER BROWSERS

If older browsers use a polyfill for placeholder text, the value would be the same as the placeholder, so it is considered empty if those values match.

[image: image]

CREATING ERROR MESSAGES

The validation code processes elements one by one; any error messages are stored using jQuery's .data() method.

HOW ERRORS ARE SET

Throughout the validation code, whenever an error is found, you will see calls to a function called setErrorMessage(), which takes two parameters:
i) el: the element that the error message is for
ii) message: the text the error message will display

For example, the following would add the message ‘Field is required’ to the element that is stored in the el variable:

setErrorMessage(el, ‘Field is required’);

HOW DATA IS STORED WITH NODES

Each error message is going to be stored with the element node that it relates to using the jQuery .data() method. When you have elements in a jQuery matched set, the .data() method allows you to store information in key/value pairs for each individual element.

The .data() method has two parameters:
i) The key, which is always going to be errorMessage
ii) The value, which is the text that the error message will display

setErrorMessage()

[image: images]

DISPLAYING ERROR MESSAGES

After each element has been checked, if one or more were not valid, showErrorMessage() will display the error messages on the page.

HOW ERRORS ARE DISPLAYED

If an error message needs to be shown, first a element will be added to the page directly after the form field with the error.

Next, the message is added into the element. To get the text for the error message, the same jQuery .data() method that set the message is used again. This time, it only takes one parameter: the key (which is always errorMessage).

This all happens within the function called showErrorMessage() which is shown below.

1. $el holds a jQuery selection containing the element that the error message relates to.

2. $errorContainer looks for any existing errors on this element by checking if it has any sibling elements that have a class of error.

3. If the element does not have an error message associated with it, the code in the curly braces runs.

4. $errorContainer is set to hold a element. Then .insertAfter() adds the element into the page after the element causing the error.

5. The content of the element is populated with the error message for that element, which is retrieved using the .data() method of the element.

showErrorMessage()

[image: images]

VALIDATING DIFFERENT TYPES OF INPUT

HTML5's new types of input come with built-in validation. This example uses HTML5 inputs, but validates them with JavaScript to ensure that the experience is consistent across all browsers.

The validateTypes() function is going to perform the validation just like modern browsers do with HTML5 elements, but it will do it for all browsers. It needs to:

	Check what type of data the form element should hold

	Ensure the contents of the element matches that type

1. The first line in the function checks if the element has a value. If the user has not entered any information, you cannot validate the type of data. Furthermore, it is not the wrong type of data. So, if there is no value, the function returns true (and the rest of the function does not need to run).

2. If there is a value, a variable called type is created to hold the value of the type attribute. First, the code checks to see if jQuery stored info about the type using its .data() method (see why on p618). If not, it gets the value of the type attribute.

[image: images]

The getAttribute() method is used rather than the DOM property for type because all browsers can return the value of the type attribute, whereas browsers that don't recognize a new HTML5 DOM property types would just return text.

3. This function uses an object called validateType (shown on the next page) to check the content of the element. The if statement checks if the validateType object has a method whose name matches the value of the type attribute. If it has a method name that matches the type of form control:

4. The element is passed to the object; it returns true or false.

5. If there is no matching method, the object is not able to validate the form control and no error message should be set.

CREATING AN OBJECT TO VALIDATE DATA TYPES

The validateType object (outlined below) has three methods:

var validateType = {
 email: function(el) {
 // Check email address
 },
 number: function(el) {
 // Check it is a number
 },
 date: function(el) {
 // Check date format
 }
}

The code inside each method is virtually identical. You can see the format of the email() method below. Each method validates the data using something called a regular expression. The regular expression is the only thing that changes in each method to test the different data types.

Regular expressions allow you to check for patterns in strings, and here they are used with a method called test().

You can learn more about regular expressions and their syntax on the next two pages. For now, you just need to know that they are used to check the data contains a specific pattern of characters.

Storing these checks as methods of an object makes it easy to access each of the the different checks when it comes time to validate the different types of input in a form.

[image: images]

i) The regular expression is [^@]+@[^@]+ (it is between the / and / characters). It states a pattern of characters that are found in a typical email address.

ii) The test() method takes one parameter (a string), and checks whether the regular expression can be found within the string. It returns a Boolean.

iii) In this example, the test() method is passed the value of the element you want to check. Below you can see the method to test email addresses.

[image: images]

1. A variable called valid holds the result of the test using the regular expression.

2. If the string does not contain a match for the regular expression,

3. an error message is set.

4. The function returns the value of the valid variable (which is true or false).

REGULAR EXPRESSIONS

Regular expressions search for characters that form a pattern. They can also replace those characters with new ones.

Regular expressions do not just search for matching letters; they can check for sequences of upper/lowercase characters, numbers, punctuation, and other symbols.

The idea is similar to the functionality of find and replace features in text editors, but it makes it possible to create far more complicated searches for combinations of characters.

Below you can see the building blocks of regular expressions. On the right-hand page, you can see some examples of how they are combined to create powerful pattern-matching tools.

[image: images]

COMMON REGULAR EXPRESSIONS

Here are a selection of regular expressions you can use in your code. Some of these are more powerful than those adopted by browsers.

At the time of writing, some of the validation rules applied by the major browsers were not very strong. Some of the regular expressions shown below are more stringent.

But regular expressions are not perfect. There are still strings that would not be valid data, but would pass these tests below.

Also, bear in mind that there are many different ways to express the same thing using regular expressions. So you may see a very different regular expression that does something similar.

[image: images]

CUSTOM VALIDATION

The final part of the script performs three checks that apply to individual form elements; each check lives in a named function.

On the next pages, you will see these three functions. Each is called in the same manner as the validateBio() function shown below. (The full code that calls them is available from the website, along with the code for all examples from the book.)

	FUNCTION
	PURPOSE

	validateBio()
	Check bio is 140 characters or less

	validatePassword()
	Check password is at least 8 characters

	validateParentsConsent()
	If user is under 13, test if parental consent box is checked

Each of these functions will return a value of true or false.

[image: images]

1. The function is called as a condition in an if… else statement. This was shown in steps 14-16 on p605.

2. If the function returns false, an error message is shown and the corresponding property of the valid object is set to false.

3. If the function returns true, the error message is removed from the corresponding element.

[image: images]

BIO & PASSWORD VALIDATION

The validateBio() function:

1. Stores the form element containing the user's biography in a variable called bio.

2. If the length of the bio is less than or equal to 140 characters, the valid variable is set to true (otherwise, it is set to false).

3. If valid is not true, then…

4. The setErrorMessage() function is called (see p608).

5. The valid attribute is returned to the calling code, which will show or hide the error.

[image: images]

The validatePassword() function starts by:

1. Storing the element containing the password in a variable called password.

2. If the length of the value in the password input is greater than or equal to 8, valid is set to true (otherwise, it is set to false).

3. If valid is not true, then…

4. The setErrorMessage() function is called.

5. The valid attribute is returned to the calling code, which will show or hide the error.

[image: images]

CODE DEPENDENCIES & REUSE

In any project, avoid writing two sets of code that perform the same task. You can also try to reuse code across projects (for example, using utility scripts or jQuery plugins). If you do, note any dependencies in your code.

DEPENDENCIES

Sometimes one script will require another script to be included in the page in order to work. When you write a script that relies on another script, the other script is known as a dependency.

For example, if you are writing a script that uses jQuery, then your script depends upon jQuery being included in the page in order to work; otherwise, you would not be able to use its selectors or methods.

It is a good idea to note dependencies in a comment at the top of the script so that they are clear to others. The final custom function in this example depends on another script that checks the user's age.

CODE REUSE VS. DUPLICATION

When you have two sets of code that do the same job, it is referred to as code duplication. This is usually considered bad practice.

The opposite is code reuse where the same lines of code are used in more than one part of a script (functions are a good example of code reuse).

You may hear programmers refer to this as the DRY principle: don't repeat yourself. “Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.” It was formulated by Andrew Hunt and Dave Thomas in a book called The Pragmatic Programmer (Addison-Wesley, 1999).

To encourage reuse, programmers sometimes create a set of smaller scripts (instead of one big script). Therefore, code reuse can lead to more code dependencies. You have already seen an example of this with the helper functions for event handling. You are about to see another example…

VALIDATING PARENTAL CONSENT

When the validation script was introduced, it was noted that the form would use a couple of scripts to enhance the page. You start to see those scripts on the next page, but one of them needs to be noted now because it hides the parental consent checkbox when the page loads.

That parental consent checkbox is only shown again if the user indicates that they are 13 years old or younger.

The validation code to check whether the parent has given their consent will only run if that checkbox is showing.

So the code to check whether the parent has given consent depends upon (reuses) the same code that checked if the checkbox should be shown. This works well as long as the other script (to show/hide the checkbox) is included in the page before the validation script.

The validateParentsConsent() function is called in the same way as the other two custom validation checks (see p614). Inside the function:

1. It stores the checkbox for parental consent and its containing element in variables.

2. Sets a valid variable to true.

3. An if statement checks whether the container for the checkbox is not hidden. It does this by fetching the value of its class attribute and using the indexOf() function (which you saw on p128) to check if it contains a value of hide. If the value is not found, then indexOf() will return -1.

4. If it is not hidden, the user is under 13. So, if the checkbox is selected, the valid variable is set to the true, and if it was not selected, it will be set to false.

5. If it is not valid, an error message is added to the element.

6. The function returns the value of the valid variable to indicate whether the consent was given.

[image: images]

HIDE PARENTAL CONSENT

As you saw on the previous page, the subscription form uses two extra scripts to enhance the user experience. Here is the first; it does two things:

	Uses the jQuery UI date picker to show a consistent date picker across browsers

	Checks whether the parental consent checkbox should be shown when the user leaves the date input (it does this if they are under 13)

1. Place the script in an IIFE (not shown in flowchart).

2. Three jQuery selections store the input where users enter their birthday, the consent checkbox, and the container for the consent checkbox.

3. The jQuery selection for the date of birth input is converted from a date input to a text input so that it does not conflict with HTML5 date picker functionality (done using the jQuery .prop() method to alter the value of its type attribute). The selection uses .data() to note that it is a date input and jQuery UI's .datepicker() method to create the jQuery UI date picker.

4. When the user leaves the date input, the checkDate() function is called.

5. The checkDate() function is declared.

6. A variable called dob is created to hold the date the user selected. The date is converted into an array of three values (month, day, and year) using the split() method of the String object.

7. toggleParentsConsent() is called. It has one parameter: the date of birth. It is passed into the function as a Date object.

8. toggleParentsConsent() is declared.

9. Inside the function, it checks the date is a number. If not, return indicates the function should stop.

10. The current time is obtained by creating a new Date object (the current time is the default value of a new Date object). It is stored in a variable called now.

11. To find the user's age, the date of birth is subtracted from the current date. For simplicity, leap years are ignored. If that is less than 13 years:

12. Show the container for the parental consent.

13. Otherwise, the container of the consent box is hidden, and the checkbox is unchecked.

[image: images]

AGE CONFIRMATION

[image: images]

When creating a date picker using jQuery UI, you can specify the format in which you want the date to be written. On the right you can see several options for the format of the date and what this would look like if the date were the 20th December 1995. In particular note that y gives you two digits for the year, and yy gives you four digits for the year.

	FORMAT
	RESULT

	mm/dd/yy
	12/20/1995

	yy-mm-dd
	1995-12-20

	d m, y
	20 Dec, 95

	mm d, yy
	December 20, 1995

	DD, d mm, yy
	Saturday, 20 December, 1995

PASSWORD FEEDBACK

The second script designed to enhance the form provides feedback to the users as they leave either of the password inputs. It changes the value of the class attribute for the password inputs, offering feedback to show whether or not the password is long enough and whether or not the value of the password and its confirmation box match.

1. Place the script in an IIFE (not shown in flowchart).

2. Variables store references to the password input and the password confirmation input.

3. setErrorHighlighter() function is declared.

4. It retrieves the target of the event that called it.

5. An if statement checks the value of that element. If it is less than 8 characters, that element's class attribute is given a value of fail. Otherwise, it is given a value of pass.

6. removeErrorHighlighter() is declared.

7. It retrieves the target of the event that called it.

8. If the value of the class attribute is fail, then the value of the class attribute is set to a blank string (clearing the error).

9. passwordsMatch() is declared (it is only called by the password confirm box).

10. It retrieves the target of the event that called it.

11. If the value of that element is the same as the first password input, its class attribute is given a value of pass; otherwise, it is given a value of fail.

12. Event listeners are set up:

[image: images]

This demonstrates how scripts often group all of the functions and the event handlers together.

[image: images]

PASSWORD SCRIPT

[image: images]

SUMMARY

FORM ENHANCEMENT & VALIDATION

	Form enhancements make your form easier to use.

	Validation lets you give users feedback before the form data is sent to the server.

	HTML5 introduced new form controls which feature validation (but they only work in modern or mobile browsers).

	HTML5 inputs and their validation messages look different in various browsers.

	You can use JavaScript to offer the same functionality as the new HTML5 elements in all browsers (and control how they appear in all browsers).

	Libraries like jQuery UI help create forms that look the same across different browsers.

	Regular expressions help you find patterns of characters in a string.

 INDEX

SYMBOLS

$() shortcut for jQuery() function 296, 299, 313, 361

$() conflicts with other scripts that use $() 361

$(document).ready(function(){…}) 312

$(function() { … }) (shortcut) 313, 364–5

$(this) 324, 549

[] Array syntax 72

[] Accessing an object's properties 103

{} Code blocks 57

{} Code block (function) 90

() Final parentheses (calling a function) 97

() Grouping operator 97

= Assignment operator 107

+= Operator (adding to a string) 111, 125

== Equal to (comparison operator) 150, 168

=== Strict equal to (comparison operator) 150, 168

!= Not equal to (comparison operator) 150, 168

!== Strict not equal to (comparison operator) 150, 168

> Greater than (comparison operator) 151

>= Greater than or equal to (comparison operator) 151

< Less than (comparison operator) 151

<= Less than or equal to (comparison operator) 151

&& Logical and (logical operators) 157, 158, 537

! Logical not (logical operators) 157, 159

|| Logical or (logical operators) 157, 159, 169

. Member operator 50, 103

// (No http: in a url) 355

A

.abort() method (jqXHR object) 389

Accessibility 46, 491

Accordion 430, 492–5, 522–5

.accordion() (jQuery UI method) 430

action (DOM property – forms) 572

add() (option to select box) 584

.add() (jQuery method) 531

.addClass() (jQuery method) 320, 498, 512–3, 519, 565

addEventListener() (DOM method) 254–5, 570–1

Adding or removing HTML Content

Comparing techniques 226–7

innerHTML & DOM manipulation 218–225, 240–1

Using jQuery 314–9, 346–7

Addition 76–7, 181

.after() (jQuery method) 318–9

Age verification 617–9

Ajax

Introduction to 370–3

Data formats

HTML 374, 378–9, 390–1

JSON 374, 376–7, 382–3, 396–7

XML 374–5, 380–1

Forms 394–5

.serialize() (jQuery method) 394

jqXHR object (see J > jqXHR object)

JSON object (see J > JSON > JSON object)

Relative URLs 389

Requests (loading data):

CORS (Cross Origin Resource Sharing) 384

HTML 378–9

HTML (jQuery) 390–1, 393

JSON 382–3

JSON/JSONP from a remote server 385–8

Proxy for loading remote content 384

XML 380–1

jQuery 388–9, 392–3

.load() 390–1, 407, 427

$.ajax() 388, 398–9, 405

$.get() 392–3

$.getJSON() 392, 396–7

$.getScript() 392

$.post() 392, 394–5

Responses 373–391

Update URL 424–7

URLs (maintaining) 424–7

XMLHttpRequest object

Methods

open(), send() 372–3

Properties

responseText 379, 383, 389

responseXML 380–2, 389

status 373, 378–9, 389

XDomainRequest object (IE8–9) 384

Alert box 125

alert() (window object) 124–5

.always() (jqXHR object) 389, 396–7

AngularJS 428, 434–9

.animate() (jQuery method) 332, 334–5, 352–3, 493, 515, 520–1

Anonymous functions 88, 96

APIs

Introduction to 410, 412

API Keys 441

Console API 470

HTML5 APIs 413

Geolocation API 416–9

History API 424–7

Web Storage API 420–3

Platform APIs 440

Google Maps API 441–7

Scripts

Introduction to 428

AngularJS 434–9

jQuery UI 429–433

.append() (jQuery method) 318, 565

.appendTo() (jQuery method) 318, 505, 519

appendChild() (DOM method) 222, 240

Arguments 93, 109

Arithmetic operators 76–7

Arrays

Introduction to 70–3

Adding and removing items 530, 536–7, 540–3

Creating 72

split() method (String object) to create arrays 128–130, 546–7, 563, 618–9

Looping through an array 174–5, 535

Methods

concat() 530

every() 530

filter() 530, 536–7

forEach() 530, 536–7

map() 530

pop() 530

push() 530, 536–7, 540–3

reverse() 530, 564–5

shift() 530

some() 530

sort() 530, 554–9, 564–5

unshift() 530

Properties

length property 72, 118–9

Arrays and objects

Arrays are objects 118–9

Array-like objects (jQuery) 308, 340

Arrays of objects 119, 533–5

Multiple return values from a function 95

vs variables and objects 116–7

Assignment operator 61, 107

Asynchronous loading (images) 509

Asynchronous processing 371

attachEvent() (IE8 event model) 255, 258–9, 570–1

Cross-browser solution 570–1

Attributes

.attr() (jQuery method) 320–1

Creating / removing (DOM method) 232–5

Autocomplete (live search) 370

B

back() (history object) 426

.before() (jQuery method) 318

beforeunload event 286–7

Behavior layer 44

Binding events 248, 250

blur() (DOM method) 573

blur event 247, 274–5, 282, 573, 588–9

Boolean data type 62, 66

break keyword 174

Browsers

Developer tools

Debugging 464–7

Examining DOM 236–7

Dimensions 124–5, 350

Feature detection (see F > Feature detection)

JavaScript console 464–79 (see also C > Console)

Rendering engine 40

Scrollbars 350

Support in examples 10

Browser Object Model

Introduction to 121–2

history object 122, 124–5, 424–7

location object 122

navigator object 122

screen object 122, 124–5

window object 122, 124–5

Bubbling (event flow) 260–1

Built–in objects 120–7

:button (jQuery selector) 342

C

Caching

Cross-references 540–1

DOM queries 190–1, 575

Images (in custom object) 509–511

jQuery selections 308–9, 540–1

Object references 540–1

Calling a function 91

cancelable property (event object) 262

Capturing (event flow) 260–1

Case sensitivity 56

catch (error handling) 480–1, 576–7

CDN 354–5

ceil() (Math object) 134

Centering images 511

Chaining (jQuery methods) 311

change event 247, 282, 573, 576–7, 586–7

Character count 588–9

charAt() (String object) 128–130

Checkboxes 580–1

:checkbox (jQuery selector) 342

:checked (jQuery selector) 342

checked (DOM property – forms) 573, 580–1

.children() (jQuery method) 336

clearTimeout() (window object) 517–9

.click() (jQuery method) 512–3

click() (DOM method) 573

click event 39, 246, 276–7, 573

clientX, clientY (event object) 278–9

.clone() (jQuery method) 346–7

.closest() (jQuery method) 336

Code blocks 56, 90

Code dependencies 616

Code reuse 616

Collections

elements (nodeLists) 196–9

elements (form) 572, 600

Color picker 591

Comments 57

Compare functions (sorting) 555–9

Comparison operators 150–9

Checking equality 168

Comparing expressions 154–5

Operands 152

Truthy and falsy values 167

concat() (array object) 530

Conditional loading 596–7

Conditional statements 149

if 160–1, 181

if … else 162–3

switch 164–5, 291

Conditions (loops) 170–1

Console

Breakpoints 476–8

console.assert() 475

console.error() 472

console.group() 473

console.groupEnd() 473

console.info() 472

console.log() 470–1

console.table() 474

console.warn() 472

debugger keyword 479

Constructor notation 106–111, 113

:contains() (jQuery selector) 338

Content layer 44

Content panels

Accordion 492–5, 522–5

Modal window 500–5

Photo viewer 506–513

Slider 515–520

Tabs 496–9

continue keyword 174, 594–5

Coordinates (geolocation API) 417–9

copy event 247

CORS (Cross Origin Resource Sharing) 384

Create attributes (DOM) 234

Create elements (DOM) 126, 222–3, 240

Create text nodes (DOM) 126, 222–3, 240

Cross-Site Scripting (XSS) Attacks 228–231

.css() (jQuery method) 322–3, 504–5, 510–1, 521

CSS

Box dimensions 348

CSS-style selectors in jQuery 302–3

Properties and values 9

Selectors to find elements (DOM) 193, 197, 202

Updating class names 189, 195, 232

Updating id attributes 189, 232

Updating styles (DOM) 195, 232

Updating styles (jQuery) 320–3, 497–9

Cut, copy, paste element (jQuery) 346–7

cut event 247

D

.data() (jQuery method) 546–7, 565, 602, 608–9

data-* attributes (HTML5) 289–90, 544–6, 608

Data binding (Angular) 437

Data models

Introduction to 26–7

Comparing techniques 116–7

Arrays and objects 118–9, 533

Objects and properties 28, 102–5, 142

Data types

Complex data types

Objects (Arrays and functions) 131

Simple (primitive) data types

Boolean 62, 131, 167

Number 62, 131–5

Null 131

String 62, 128–130, 131

Undefined 131

Type coercion and weak typing 166–7

Dates / Date object

Introduction to 136–9

Comparing 618–9

Creating / Constructor 136, 138, 143

Date formats 136–9

Date pickers 432–3, 591, 618–9

Day & month names 137, 143

Difference between two dates 139, 143

Sorting 559, 562–3

Methods

getTime(), getMilliseconds(), getSeconds(),

getMinutes(), getHours(), getDate(), getDay(),

getMonth(), getFullYear(),

getTimeZoneOffset() 137

setTime(), setMilliseconds(), setSeconds(),

setMinutes(), setHours(), setDate(),

setMonth(), setFullYear(), toString(),

toTimeString(), toDateString() 137

dblclick event 246

Debugging

Errors and a debugging workflow 462–3

Tips 484

(see also Console and Troubleshooting)

Declare a variable 60–1

Declaring an array 71–3

Declaring a function 90, 92

defaultChecked (DOM property – forms) 573

defaultValue (DOM property – forms) 573

Delays

clearTimeout() 517–9

.delay() (jQuery method) 311, 332–3, 364

setTimeout() 517–9

Delegating events 266–70, 290–1, 331

delete keyword 107, 112, 533

Deserializing JSON data 382–3

Design patterns 501

.detach() (jQuery method) 346, 502–3, 505

Developer tools 236–7, 464–5

:disabled (jQuery selector) 342

disabled (DOM property – forms) 573, 578

disabled (JavaScript is disabled) 491

document object

Introduction to 36–9, 123, 126–7

Events

load 39, 246, 272–3

Methods

getElementById() 39, 126, 193–195

createElement(), createTextNode() 126, 222–3

querySelectorAll() 126, 193, 197, 202, 204–5

write() 39, 49, 126, 226

Properties

domain 126

lastModified 36, 39, 126–7

title 36, 39, 126–7

URL 126–7

DOMContentLoaded event 286–7

DOM (document object model)

Introduction to 121, 126–7, 184, 186–7

Elements

Accessing

getElementById() 193–5

getElementsByClassName() 193, 197–9, 200

getElementsByTagName() 193, 197, 201

querySelector() 193–4, 202–3

querySelectorAll() 193, 197, 202–3, 204–5

Adding

appendChild() 222–3

insertBefore() 222, 240

Creating

createElement() 222–3

Updating

DOM manipulation 219, 222–5, 227

innerHTML 218, 220–1, 227, 228–31

textContent and innerText 216

Attributes

class attribute/className property 195, 232

getting and updating 232–5

id property 232

Text nodes

createTextNode() 222

nodeValue 214–5

textContent and innerText 216–7

Document nodes 186

document object (see D > document object)

DOM queries

Performance (fastest route) 192

Caching DOM queries 190–1, 575

DOM tree

Introduction to 40–1, 186–7

Inspecting (exploring – browser tools) 236–7

Traversing the DOM 208, 210–11

Updating 212–3

Events (see E > Events)

Event handlers 250, 252–3

Event listeners 250, 254–5, 263, 265

Nodes 40, 186–9

Whitespace 209–211

NodeList 192, 196–9, 202–205

length property 196

Live and static NodeLists 196

Looping through 204–5

Selecting items from a NodeList 198–9

.done() (jqXHR object) 389, 405

Dot notation 103 (see also member operator)

Do while loops 170, 177

Drop–down boxes 584–7

DRY principle (don't repeat yourself) 616

Dynamic filtering 538–43

E

.each() (jQuery method) 324–5, 333, 339, 498–9, 519, 531, 546–7

ECMAScript 532

Elements (see D> DOM > Elements and J > jQuery)

Dimensions (jQuery) 348–9

Finding elements (DOM) 192–203

Finding elements (jQuery) 296, 302–3, 336, 342

Form element content (jQuery) 342–5

Hiding/showing 332–3, 582–3, 618–9

Inserting new elements (jQuery) 318–9

Updating elements (DOM) 212–3

Updating elements (jQuery) 313

elements collection (DOM property) 572, 574–5

.empty() (jQuery method) 346, 504–5

:enabled (jQuery selector) 342

.eq() (jQuery method) 340–1, 512–3, 521

Equality 150–1, 168

equals sign (assignment operator) 61

Errors

Common errors 460–1, 485

Debugging workflow 462–3 (and tips 484–5)

error event 246, 272

Error handling 480–1, 576–7

Error objects 459, 461, 481

EvalError 459–460

RangeError 459, 461

ReferenceError 459–60

SyntaxError 459–60

TypeError 459, 461

URIError 459–60

Exceptions 458, 480–1

NaN 461

Understanding errors 458

e (shorthand: event or error object) 328

EvalError 459–460

Evaluating conditions 149–59

Events

Introduction to 5, 30–31, 244–50

All events

beforeunload 286–7

blur 247, 274–5, 282

change 282–3, 586–7

click 260–1, 268–9, 276–7

dblclick 246, 276

DOMContentLoaded 286–7

DOMNodeInserted 284, 285

DOMNodeInsertedIntoDocument 284

DOMNodeRemoved 284

DOMNodeRemovedFromDocument 284

DOMSubtreeModified 284

error 246, 272

focus 274–5, 282, 588–9, 594–5

focusin 274

focusout 274

hashchange 286, 426–7

input 247, 271, 280–2, 552–3, 573, 588–9

keydown 280

keypress 280–1

keyup 280

load 39, 246, 272–3

mousedown 276

mousemove 276, 279

mouseout 276

mouseover 276

mouseup 276

resize 272, 504–5

scroll 272

submit 282–3, 572, 574–5

unload 272

binding 248, 250

Delegation (DOM) 266, 268–71, 290–1

Delegation (jQuery) 330–1, 365

Determining position 278–9

Event flow (bubbling and capturing) 260–1

Event handlers

Cross browser 570–1

DOM Event handlers 250, 252–3

DOM Event listeners 250, 254–5

Removing event listeners 255

Using parameters with events 256–7, 263

HTML event handlers 250–1

event object DOM 262–3, 265–70

Methods

preventDefault() 262, 267, 283

stopPropagation() 262, 267

Properties

cancelable, clientX, clientY, pageX, pageY,

screenX, screenY, target, type 262, 278–9

event object (jQuery) 328–9, 331

Methods

.preventDefault() 328

.stopPropagation() 328

Properties

data, pageX, pageY, target, timeStamp,

type, which 328

IE8 event model

attachEvent() 255, 258–9, 290

Cross-browser helper function 570–1

event object 264–5, 570–1

Property and method equivalents 262

Fallback example 258–9

jQuery (consider as alternative) 300–1

jQuery events 326–331, 343

Performance (delegation) 266, 268–9, 290, 331

Terminology (fired, raised, triggered) 247

Types of event 246–7, 271

W3C DOM 271–286

HTML5 286–7

jQuery events 326–331, 343–5

Which element user interacted with 262–70

every() (array object) 530

Exceptions (see Errors)

Execution contexts 453–6

Expressions 74–6

Comparing expressions 154

Function expressions 96–7

F

.fadeIn() (jQuery method) 298, 311, 332–7, 365

.fadeOut() (jQuery method) 332–3, 337, 510–11

.fadeTo() (jQuery method) 510–11

.fail() method (jqXHR object) 389, 396–7, 405

Falsy and truthy values 167–9

Feature detection

Feature detection (in jQuery) 301

Modernizr 414–5, 417, 419, 593, 596–7

:file (jQuery selector) 342

File extension

.js 46

.min.js 298

Filtering

Introduction to 534

filter() (array object) 530, 536–7

.filter() (jQuery method) 338–9, 343, 531, 548–9

Tags 544–9

Text / live search 550–3

finally (error handling) 480–1

Final parentheses 97

.find() (jQuery method) 336–7, 518–9, 564–5

Firebug 237

firstChild (DOM property) 188–9, 208–9, 211

Flags 578–9

floor() (Math object) 134–5, 139

Flowcharts 18, 23, 148, 494

fn object (jQuery) 523–5

focus() (DOM method) 273, 573

.focus() (jQuery method) 326, 619

:focus (jQuery selector) 342

focus event 274–5, 282, 573, 588–9

focusin event 247

focusout event 247

forEach() (array object) 530, 536–7, 542–3

for loop 172–3, 175, 207

Forms

Controls (types of) 573

Changing type of form control 576–7

Checkboxes 580–1

Date picker (HTML5) 591

Date picker (jQuery) 432–3, 619–9

Email 590, 611

Radio buttons 582–3

Range inputs 591

Select boxes 584–7

Submit button 578–9

Text input 576–7, 594–5

Textareas 588–9

elements collection 600

Enhancement

Introduction to 568

jQuery UI (Date picker & slider) 432–3

Password length and match 620–1

Show or hide based on other form input 618–9

Giving focus to an element 273, 326, 573, 619

Methods 343, 572–3, 584

Properties 343, 572–3, 584

Submitting forms 574–5, 578–9

Validation 282, 598–619

Introduction to 568, 598

Age 617–9

Character count 588–9

Checkbox selected 580–1

Checking for a value 606–7

Checking length of text input 615

Dates 617–9

Email 611

HTML5 form validation 590–1, 604–5

Length of text/password input 588–9, 620–1

Numbers 132, 343

Password length and match 615

Radio button selected 582–3

Regular expressions 612–3

Required elements 606–7

test() and regular expressions 611–3

Turn off HTML5 validation 591

URL 590

Which element the user interacted with 576–7 (see also Event object)

forward() (history object) 426

Function-level scope 98

Functions

Introduction to 88–9

Anonymous functions 88

Arguments 92–3

Calling 91, 93

Code block 90

Declaring 90, 92, 96

Final parentheses 97

Function expressions 96–7

Helper functions 570–571

initialize / init() 539, 542–3

Parameters 88, 92–3

return 92, 94–7, 578–9, 586–7, 594–5

this (scope of keyword) 270 (see also this keyword)

G

Geolocation API 416–9

$.get() (jQuery method) 388, 392–3

getAttribute() (DOM method) 232–3

getCurrentPosition() (Geolocation API) 417–9

getDate() (Date object) 137

getDay() (Date object) 137

getElementById() (DOM method) 126, 192–5

getElementsByClassName() (DOM method) 193, 197, 200

getElementsByTagName() (DOM method) 193, 197, 201, 240

getFullYear() (Date object) 137–8

getHours() (Date object) 137

getItem() (storage API) 421–3

$.getJSON() (jQuery method) 388, 392, 396–7, 405

getMillseconds() (Date object) 137

getMinutes() (Date object) 137

getMonth() (Date object) 137

$.getScript() (jQuery method) 388, 392

getSeconds() (Date object) 137

getTime() (Date object) 137

getTimezoneOffset() (Date object) 137

Global JavaScript Objects

Introduction to 121, 124–139

Boolean object 123

Date object 123, 136–9

Math object 123, 134–5

Number object 123, 132–3

Regex object 123

String object 123, 128–130

Global scope 98

go() (history object) 426

Google Maps API 441–7

Grouping operator 97

:gt() (jQuery selector) 340–1

H

:has() (jQuery selector) 338–9

hasAttribute() (DOM method) 232–3, 235

.hasClass() (jQuery method) 365

hashchange event 286, 426–7

.height() (jQuery methods) 348–9, 350, 353

height (screen object) 124–5

Helper functions 570–571

.hide() (jQuery method) 332–3, 512–3, 582–3, 618–9

History API 424–7

history object (Browser Object Model) 124–5, 424–7

Methods

back(), forward(), go(),

pushState(), replaceState() 426

Properties

length 426

History stack 424

Hoisting 456

How many characters in a string 128–130

.html() (jQuery method) 314–7

HTML5

APIs 413

Geolocation API 416–9

History API 424–7

Web Storage API 420–3

Attributes

data-* attributes 289–90, 544–6, 608

required 591, 607

Events 286–7

Form controls (support, polyfills, styling) 590–2

placeholder fallback 594–7

I

id (DOM property) 189, 232

if … else 148–9, 162–3

if statements 148–9, 160–3, 181

:image (jQuery selector) 342

Images centering 511

Immediately Invoked Function Expressions (IIFE) 97, 142, 504, 523

Implicit iteration 310

Increment in loops 170–3

.index() (jQuery method) 565

Index numbers 129

indexOf() (String object) 128–130, 550–3

Initialize / init() (functions) 539, 542–3

Inline scripts 49

.innerHeight() (jQuery methods) 348

innerHeight (window object) 124–5

innerHTML (DOM property) 218, 220–1, 227

Security risks 228

innerText (DOM property) 216–7

.innerWidth() (jQuery methods) 348

innerWidth (window object) 124–5

:input (jQuery selector) 342

input event 247, 271, 280–2, 552–3, 573, 588–9

insertBefore() (DOM method) 240

Instances (of objects) 109–11

Interpreter

Definition 40

How it works 452–7

.is() (jQuery method) 343, 521, 565

isNaN() (Number object) 132

$.isNumeric() 343

item() (Array) 71

item() (NodeLists) 196, 198

J

JavaScript console 462–79

JavaScript History / Standards 532

JavaScript libraries 360–1, 428

JavaScript not enabled 491

jQuery

Introduction to 294, 296, 298–9

$() shortcut for jQuery() 296, 299, 313, 361

$(function() { … }); 313

Advantages 300

Ajax (see Ajax)

API 358

Caching selections 308–9

Chaining methods 311

Conflicts with other scripts 361

document.ready() 312–13

Documentation 358

Elements 302–3, 314–6, 318–9, 336–9, 342–7

Events object 326–331

.fn object 523–5

Forms (.serialize()) 394

Global methods

$.ajax() 388, 398–9, 405

$.get() 388, 392–3

$.getJSON() 388, 392, 396–7, 405

$.getScript() 388

$.isNumeric() 343

$.post() 388, 394–5

How to include 298, 354–5

Implicit iteration 310

jQuery() function (see also $()) 296, 299, 313, 361

jQuery methods: full list of methods 304–5

jQuery selection (matched set) 296–7, 306

Adding to / filtering selection 338–341

Caching 308–9

Number of elements (length property) 364

jQuery selectors 296, 300, 302–3

jQuery Selectors: full list of selectors 302–3

jQuery UI 429

Accordion 430

Date picker 432–33, 618–9

Form enhancements 432–3

Tabs 431

Looping

Through elements (implicit iteration) 310

Through elements .each() (see E > .each())

Matched set (see J > jQuery > jQuery selection)

Page is ready to work with 312–3

Plugins 359, 428

Creating your own 522–5

Date picker 619

jQuery UI 429–434, 618–9

noUISlider 538

Versions 298, 301

Where to get / download 298, 354–5

Where to place script 313, 354–7

jqXHR object 389, 405

Methods

.abort(), .always(),

.done(), .fail() 389, 396–7

.overrideMimeType() 405

Properties

responseText, responseXML,

status, statusText 389

JSON

Introduction to 376–7

As an Ajax data format 374

Debugging JSON 474

Displaying JSON 382–3

JSON object

parse() & stringify() methods 377, 382–3

Serializing and deserializing data 382–3

JSONP 385–7

K

Keyboard events 246–7, 280–1

keydown, keypress, keyup, input event 246–7

keys (objects) 101, 533, key/value pairs 118

Keywords

break 164–5, 174

case 164–5

catch 480–1, 576–7

continue 174, 595

debugger 479

delete 107, 112, 533

finally 480–1

new (array) 71

new (object) 106, 109

return 92, 94–7, 578–9, 586–7, 594–5

switch 164–5

this 102–9, 114–5, 270, 324

throw 482

try 480–1, 576–7

var 60, 63–8

L

lastChild (DOM property) 208, 211

lastIndexOf() (String object) 128–130

length (history object) 124, 426

length (items in a select box) 584

length (String object) 128–130, 588–9, 620–1

Length of text input 588–9

Lexical scope 457

Lexicographic sort 554

Libraries 360–1, 428

Linking to a JavaScript file 47, 51, 298, 313, 354–7

Links

Get value of href attribute 407

Which link was clicked 498–9

Literal notation 102, 104–5, 113, 142

(see also O > Objects > Creating your own objects)

Livesearch (autocomplete) 370

load event 246, 272–3, 286–7

.load() (jQuery method – Ajax) 388, 390–1, 407

Local scope 98–9 (see also p456–7)

Locale 137

localStorage 420–3

location property (window object) 124–5

Logical operators 156–9, 169

Logical and 157–8, 537

Logical not 157, 159

Logical OR 157, 159

Short-circuit evaluation 157, 169

Looking for text 550–3

Loops

Introduction to 170–7

break keyword 174 (see also Keywords > break)

Conditions 170–3

continue keyword 174, 595

Counters 171–4, 181

do while loop 170, 177

for loop 175

Introduction to 170, 175

Diagram 172–3

Looping through elements 204–7

Increment (++) 171

Infinite loop 174

jQuery implicit iteration 310

jQuery .each() method 324

Looping through

an array 175, 530, 534–7, 542–3

checkboxes 580–1

DOM elements (nodeList) 204–7, 594–5

properties of an object 533, 605

radio buttons 582–3

Performance 174

while loop 170, 176, 181

Lowercase 128–130

:lt() (jQuery selector) 340

M

map() (array object) 530

Maps (Google maps) 441–7

Matched set (jQuery) 296–7, 306–9, 338–41, 364

Math object 134–5

Methods

ceil(), floor(), random(),

round(), sqrt() 134

Properties

PI 134

Member operator 50, 103

method property (DOM property – forms) 572

Methods

Introduction to 32–3, 100–11

Calling a method 50, 103

Minification (.min.js extension) 298

Modal window 500–5

Modernizr 414–5, 417, 419, 593, 596–7

Module pattern 501

mousedown, mousemove, mouseout,

mouseover, mouseup event 246, 276–7

multiple (DOM property – forms) 584

Multiplication 76–7, 176–7, 181

Mutation events 247, 284–5

MVC / MV* 360, 434–9

N

name (DOM property – forms) 572–3

Name/value pairs 28, 88–9, 101, 113, 116–8, 131

Naming conflicts (collisions) 97, 99, 361

NaN 78, 132, 461, 483

navigator object (Browser Object Model) 122, 414, 417–9

new keyword 71, 106, 109

.next() (jQuery method) 336–7, 495

.nextAll() (jQuery method) 336

nextSibling (DOM property) 208, 210, 214

NodeLists 196–9

Nodes (introduction to) 40, 186–7

nodeValue (DOM property) 184, 214–5, 241

No JavaScript 491

Non–blocking processing 371

.not() (jQuery method) 338, 494–5, 531

:not() (jQuery selectors) 338–9

noUiSlider 538, 542–3

novalidate property (HTML5 forms) 591, 604–5

Number object (Built-in Objects)

Methods

isNan(), toExponential(),

toFixed(), toPrecision() 132–3

Rounding numbers 132–3

Numbers 62–3

Random numbers 135

Rounding 132–3

Sorting 558

Numeric data type 62 (see also D > Data types)

O

Objects

Introduction to 26–9, 34–5, 100–1

Accessing properties and methods

Dot notation 103–5, 110

Square brackets 103, 107

Adding and removing properties 112

Arrays and objects 118–9, 308, 340, 533

Built–in objects 120–3

Creating

Comparison of techniques 113

Constructor notation 106, 108–111, 113

Literal notation 102, 104–5, 113, 142

Instances of 109–11

Multiple objects 105, 108–111

Creating your own objects (examples of)

Compare functions for sorting 562–3

Custom object for valid elements 601, 604–5

Data: cameras and projectors 586–7

Data: people for filtering 533–4

Image cache 509–13

Modal window 501–5

Tags 544–9

keys 101–2, 113, 117–8, 131, 533

Methods 32–5, 38–9, 100–11

Properties 28–9, 34–5, 100–12

this 114–5

Updating properties 107

vs variables and arrays 116–7

Object models (introduction to) 121

.off() (jQuery method) 505

.offset() (jQuery methods) 351, 353

.on() (jQuery method) 326–31, 343–5, 365

onpopstate property (window object) 426–7

.open() (XMLHttpRequest object) 373, 379, 381, 383

Operators

+= adding to a string 111, 125, 127, 130, 133

Comparison operators 148–56

> greater than, >= greater than or equal to 151–5

() grouping operator 97

< less than, <= less than or equal to 151

. Member operator 50, 103

== is equal to, != is not equal to 150

=== strict equal to, !== strict not equal to 150

? : Ternary operator 562, 579, 583

Unary operator 168

<option> elements 584–7

options (DOM property – forms) 584

Order of execution 452

.outerHeight(), (jQuery method) 348

.outerWidth() (jQuery method) 348

.overrideMimeType() (jqXHR method) 405

P

Page loads – run script 273, 312–3

pageXOffset, pageYOffset (window object) 124–5

pageX, pageY (window object) 124, 278–9

Parameters 50, 88, 92–3

With event listeners 256–7

.parent() (jQuery method) 336, 498–9

.parents() (jQuery method) 336

parentNode (DOM property) 208, 224–5

:password (jQuery selector) 342

paste event 247

Performance

Caching

DOM queries 190–1, 575

Images (custom object) 509–11

jQuery selections 308–9, 540–1

Object references 540–1

Text (custom object) 551

Event delegation 266, 268–71, 290–1, 330–1, 365

Global vs Local variables 98–9

Selecting class and id attributes (jQuery vs DOM) 324

Where to place scripts 356–7

PI property (Math object) 134

placeholder (and its fallback) 590–1, 594–5

Polyfills 593–7

pop() (array object) 530

.position() (jQuery method) 351

Position object (geolocation API) 418–9

PositionError object (geolocation API) 418–9

Position of items on page 351–3

$.post() (jQuery method) 388, 392, 394–6

.prepend() & .prependTo() (jQuery methods) 318

Presentation layer 44

preventDefault() (event object) 262, 267, 283,

.preventDefault() (jQuery method) 328, 345, 365, 494–5, 504–5

previousSibling (DOM property) 208–10

Primitive data types (see Data types)

Progressive enhancement 45

.prop() (jQuery method) 618–9

Properties 28–9, 34–5, 100–12

Protocol relative URL 355

Proxy (Ajax) 384

push() (array object) 519, 530, 536–7, 540, 542–3

pushState() (history object) 424–7, 426

Q

querySelector() (DOM method) 193–6, 202, 241

querySelectorAll() (DOM method) 126, 193, 197

R

:radio (jQuery selector) 342

random() (Math object) 134–5

Random numbers 135

RangeError 459, 461

Range slider 432–3, 538, 542–3

.ready() (jQuery method) 312–3, 361, 364

Reference

To an element DOM 190–1, 575

To an element jQuery 308–9, 540–1

To an object 540–1

ReferenceError 459–60

Regular expressions 563, 611–3

Relative URLs (Ajax) 389

Removing content:

.remove() (jQuery method) 299, 316–7, 346, 584

.removeAttr() (jQuery method) 320

removeAttribute() (DOM method) 232, 235

removeChild() (DOM method) 224–5

.removeClass() (jQuery method) 320–1, 339, 341, 512–3

removeEventListener() (DOM method) 255

(see also innerHTML an(d detach())

replace() (String object) 128–130, 406–7, 562–3

replaceState() method (history object) 424–6

.replaceWith() (jQuery method) 316

Require.js 593

:reset (jQuery selector) 342

reset() (DOM method – forms) 572

reset event 247, 572

resize event 246, 272, 504–5

responseText (XMLHttpRequest object) 379, 383, 389

responseXML (XMLHttpRequest object) 380, 389

return keyword 92, 94–7, 578–9, 586–7, 594–5

reverse() (Array object) 530, 564–5

RangeError 459, 461

Rounding numbers 132–5

round() (Math object) 134

S

Same origin policy 420

Saving a script 46

Scope 98–9, 457

Global scope 98–9, 453–7

IIFEs 97

Lexical scope 457

Local (function-level) scope 98–9, 453

Naming collisions and namespaces 99, 523

Screen dimensions 124–125, 278, 350

screen object (Browser Object Model) 124–5

Properties

height, width 124

screenX, screenY (window object) 124, 278

<script> element 47

Conditional loader for scripts 596–597

When to load 596–7

Where to place <script> tag 48, 51, 313, 354–7

Scripts

Approach to writing 16–23

Definition 14–7

scroll event 246, 272

.scrollLeft() (jQuery method) 350

.scrollTop() (jQuery method) 350, 353

Search 550–553

Security: Cross Site Scripting (CSS) Attack 228–231

Select boxes 584–7

select() (DOM method) 573

:selected (jQuery selector) 342

selected (DOM property – forms) 573, 580–3

selectedIndex (DOM property – forms) 584

selectedOptions (DOM property – forms) 584

select event 247

send() (XMLHttpRequest object) 373, 379, 381, 383

Separation of concerns 490

.serialize() (jQuery method - forms) 394–5

Serializing JSON data 382

sessionStorage 420–3

setAttribute() (DOM method) 232, 234

setDate() (Date object) 137

setFullYear() (Date object) 137

setHours() (Date object) 137

setItem() (storage API) 421–3

setTime() (Date object) 137

setTimeout() (window object) 517–9

setMillseconds() (Date object) 137

setMinutes() (Date object) 137

setMonth() (Date object) 137

setSeconds() (Date object) 137

shift() (array object) 530

Short–circuit evaluation 157, 169

.show() (jQuery method) 332–3, 344, 364

.siblings() (jQuery method) 336, 548–9

Slider (content panel) 515–520

.slideToggle() (jQuery method) 494–5

some() (array object) 530

sort() (array object) 530, 533, 554–65

Sorting 555–6

Dates 559

Lexicographic sort 554

Numbers 554, 558

Random order 558

Sorting a table 561–6

split() (String object) 128–130, 546–7, 563, 618–9

sqrt() (Math object) 134

src attribute 47

Stack 454–5

Statements 56

.stop() (jQuery method) 332, 353, 510–1

stopPropagation() (DOM event object) 262, 267

.stopPropagation() (jQuery method) 328

Storage objects (storage API) 420–3

Storing data (compare techniques) 116–7

String data type 62, 64–5

Checking for text 552–3

String object

Methods

charAt(), indexOf(), lastIndexOf(),

replace(), split(), substring(), trim(),

toLowerCase(), toUpperCase() 128–130

Properties

length 128–130

:submit (jQuery selector) 342

submit() (DOM method – forms) 572

Submit buttons 578–9

submit event 247, 271, 282, 572

substring() (String object) 128–130

.complete() (jQuery method) 396

.error() (jQuery method) 396

.success() (jQuery method) 396

switch statements 164–165, 291

Switch value 165

Synchronous processing 371

SyntaxError 459–460

T

Tables

Adding rows 542–3

Sorting a table 560–5

.tabs() (jQuery UI method) 431

Tabs 431, 496–9

target property (event object) 262–3, 268–9

Templates 360, 434–9

Ternary operator 562–3, 579, 583

Testing for features (see Feature detection) test() method 611

.text() (jQuery method) 314–7, 364–5, 535

:text (jQuery selector) 342

<textarea> 588–9

textContent (DOM property) 216–7

this 102–9, 114–5, 270, 324

throw (error handling) 481–3

Timers (see Delays)

.toArray() (jQuery method) 531

toDateString() (Date object) 137

toExponential() (Number object) 132

toFixed() (Number object) 132

.toggle() (jQuery method) 332, 493

.toggleClass() (jQuery method) 565

toLowerCase() (String object) 128–130, 550–3

toPrecision() (Number object) 132

toString() (Date object) 137

toTimeString() (Date object) 137

toUpperCase() (String object) 128–130, 406

Traversing the DOM 208–11

trim() (String object) 128–130, 552–3

Troubleshooting

Ajax not working in Chrome (locally) 378

Ajax requests: assets not showing up 389

Common errors 485 (see also 460–1)

Console 464–474

Debugging JSON data and objects 474

Debugging tips 462–3, 484

Equivalent values do not match 166

Events firing more than once 260–1

IE will not run script locally 47

jQuery object only returns data from first element in selection 307

NaN 78, 461

try … catch 480–1, 576–7

Truthy and falsy values 167–9

try (error handling) 480–1, 576–7

type (DOM property – forms) 573

type (event object) 262

Type coercion 166, 168

TypeError 459, 461

U

UML (Unified Modeling Language) 494

undefined 61, 485

Unix time 136–7

unload event 246, 272 (see also beforeunload)

unshift() (array object) 530

Untrusted data (XSS) 228–31

.unwrap() (jQuery method) 346

Updating content (see DOM and jQuery)

Updating page without refreshing (see Ajax)

Uppercase 128–130, 406

URIError 459–460

URL (get current) 36–9, 124

V

.val() (jQuery method) 343, 345, 365, 542–3

Validation (definition) 282, 568

value (DOM property – forms) 573, 574–5, 578–9

Variables

Assign a value / assignment operator 61

Declaration 60

Definition 58–9

Naming 60, 69

Naming conflicts and collisions 97, 99

Scope 98, 453

undefined 61, 485

vs arrays and objects 116–7

var keyword 60, 63–8

W

Weak typing 166–7

Web Storage API 420–3

Where to place your scripts 356

while loop 170, 176, 181

Whitespace (DOM) 209–211, 237

width (screen object) 124–5

.width() (jQuery methods) 348–50

window object (Browser Object Model) 36–7, 124–5

Introduction to 36–7

Methods

alert(), open(), print() 124

Properties

innerHeight, innerWidth 124–5

location property 36, 124

onpopstate 426

pageXOffset, pageYOffset 124

screenX, screenY 124–5

write() (document object) 126, 226

XYZ

XDomainRequest object (IE8–9) 384

XML 374–5, 380–81

XMLHttpRequest object

Methods

open(), send() 372–3

Properties

responseText 379, 383, 389

responseXML 380–2, 389

status 373, 378–9, 389

XSS (Cross Site Scripting) Attacks 228–231

 OEBPS/Images/p162-001.jpg
if (score >= 50) {
congratulate();
it LA

} CODE TO EXECUTE IF VALUE I TRUE

else {
encourage();
I—'—l

| —————

& ChkbioUAL EATERERT D tonpmast @ i copEmidek: i Bl COGE BLOGK

OEBPS/Images/p154-001.jpg
RIS T RUROR IV E
L

((scorel + score?) > (highScorel + highScore?))

. D ,
T | T
opERAND. compamison operaND

OEBPS/Images/p548-001.jpg
Create smaty <button> slement
‘Add text: Show A1

Add cless: ective
Event: click on button
1

ANONYMOUS FUNCTION:
Showe all mages.

@ Q00

Add zctive class to this button &
remove active cless from siblings

T

Show all images

Add buton te the fiter buttons

+

LODP THROUGH EACH PROPERTY
‘O tagger ORECT

®© ©0 0 oo

ANONYMOUS FUNCTION:
Makes button for tag

creats

mpty <hurtme elamant
1

Add tag name 8 count to the button

3

Event: click on button

ANONYMOUS FUNCTION:
Shows Images with selected (zg

6 e

Show tha matzhing mages

‘Add button to the filter buttons

Q e
® siblings.
]
® Hido il photos
b
@ Fiter for images with this tag
1
o
0|

OEBPS/Images/p219-005.jpg
text

OEBPS/Images/p413-001.jpg
geuluvalion How o el where the Lser is ocaled w48

aeriSTomae St mformaian i thebrawscr (suen wher user € nses 1ok wiadnu) 420
fonStorage Storc nfermaian In thebrawser while o tebAvindow ks cpen

sc

PRETR A athas

et A R el Ry

OEBPS/Images/p138-002.jpg
Copyright ©2014

OEBPS/Images/p219-004.jpg

OEBPS/Images/p138-001.jpg
<03 adteoboct s

JAVASCRIPT

@ var torny new hata()s
@ var vezr = today.getFullear(};

@>{Var el = docunent .getElementByld(' “eoter'];
el.inneriTHL = '<p-Copyright ©s' + year +

/o

OEBPS/Images/p219-003.jpg
text

OEBPS/Images/p316-001.jpg
$(*Ti.hot").html(function() {
return '' + §(this).text() + '';

D @D @

OEBPS/Images/p219-002.jpg

OEBPS/Images/p235-002.jpg

OEBPS/Images/p219-001.jpg
text

OEBPS/Images/p235-001.jpg
JAVASCRIPT <08 fremue el

var *Hrstlten = document getElensncEyIa('onet); // Get The first fren
I (Hivstitennasattrbute('class']) | 7718 15 nas » cisss attrinite
Theatie

oL bl st] 77 Remove L class atribite

OEBPS/Images/p510-001.jpg
]

©

image that was requested
image currently being shown
cache: object to remember loaded Images
$frame: container for imags

Sthumos: container for thumbnalls

FUNCTION: crossfade(Sing)
Fades to new Image (passed as a parameter)

Is there a
? current Image? ?
¥
Stop animation
& fade out old
image

Center new image using CSS

1
Fade In new Image

Store new Image in Scurrent

OEBPS/Images/p491-001.jpg
“Ano-s neet

<UDDETYPF bualschin cliss=no js7>
<bodg>
<14 Clzss-"snarning"-You must enable JAVASCIipt To buy from used<y-
<1-- Turn off jour JavaScript T see the i ffarence
<sCript sre="js/no-s. Js"=/scripts
</luy>
</htat>

OEBPS/Images/p491-002.jpg
var ellcament. = docamen L docent Flient
elbocumenc. classNane = e1Docunent. classhane. replace(/(*[\s)ne-1s(\s[$)/. 311}

OEBPS/Images/p297-001.jpg
it LL2

$('1i.hot').addClass (' complete');
| e

T ST ST PARAMETER(E)

OEBPS/Images/p386-001.jpg
<oefduta Juunp. a1

<soript secets/data-jsonp.ds e script
“aoriph sre-"http: j/deciphered. conjs/jsonp. 7
</bagy>

</t

I hack-<howr vent " fseripts

OEBPS/Images/p386-002.jpg
coojge/anta faomp 3¢ [Javasceier

unction stowEvents {gaza) (7/ Callback wnen JSON Toacs
var neuontent s 71 arizbie to bald HiM

/¢ RUTID UP STRING WTTH WFW CONTFHT (conld alo use: DO manipuTal‘on)

for {uar 1 = 05 1 < deta.events.lengtn T++) [/{ Locg through data

nenontant
aeutant ant
newContent

Lty classerevems '

“eing sre- - datx.events[1].map + *

' alt="' | gata.events[1].lccation 1 '* />

nentont el = e+ Loy <[] Lol fon + /ity

“enContent += data.events[i] .date ~ '<p>
ety

/1 Upcate tha rage with the new cartent
docurent.gezCTementByld('content ') nnerliTHL = newContents |

OEBPS/Images/p378-001.jpg
THE MAKER BUS

The bus stops here.
peva—
i e s

HIGHLIGHTED AREA LOADED USING AJAX

OEBPS/Images/p395-002.jpg
00 3q-past hte]

<furn Tt e el fon="regisLer.phy® et hod=" st

<r2-egistars/i2>

<label for-"name"=Username</|abel=<input type-"text" id-"name" name-‘name" /=
<Tzbel for="pui>Password</1abel><inpuc type="passuord® 14="nd" name="pud" />

<label for-"emsi | “~tmail</Iabel<input type-"erai name-"email" >

<inpul Lype=tsabnit’ values"Jof
</ form-

id-emai

OEBPS/Images/p395-003.jpg

OEBPS/Images/p459-001.jpg
Q Eleme~s Newwork Sources Timeline Profiles Resources Audits |Conscle @1
© ¥ <iooframes v
@ Uncaugtt SyrtaxErrar: Unexpscted token TLLEGAL rurs. jsid

¥ o (-}

0,

OEBPS/Images/p476-002.jpg
o = 50

[

OEBPS/Images/p251-001.jpg
kT | 08/t bt e

<forn weth

o el . arg vl
lalu fur- e =/l 1
<iNpUL Syoe="text! i¢=username® cnblur="checkUsernzme()” />
iy 10-*feedaack” »=/dive

<label Tor=pzssword*>Create a password: </label>
- passuori® />

<input Ty
PO

ian upt* /-

=seript type-“text/jav

Crit® src-is/event-atiributes, s /scripts

OEBPS/Images/p251-002.jpg
206 even-atiributes s

JAVASCRIPT

Declare function
Sel fecdback elomen
Get usernane input
71 1% usernane too shart

“unction checkUsernanel) ¢
var eMMsy = cocument.gelElenentById(feedbark')
ar ellsername = document. geclenentdyld{'userrane!)
IF (elllsernams. v lue. longth « 4] [

elksn. taxtContent - Usernare must be § caaracters ov mora’; /) Set msa
) eise { 1/ tnenvise
; 77 Cloar mossage

el LoxICanlent = *y
)

OEBPS/Images/p467-001.jpg
Javaseript & jQuery - Thapter 10. Error Hancling & Debugging - Console rrors. -

e (8- o (D] [+][#]

Securiy |~ ® Logging.

* Syrtaxkrrort ilicsal charactor

»

OEBPS/Images/p476-001.jpg
if (area < 100) {
debuaaer

u
Line 9, Column 1

OEBPS/Images/p420-001.jpg
STORAGE

LOCAL

SESSION

s the data stored wnen you
close a window/tab

o

(<]

Can all open windows/tabs
secoce the data?

[

[x]

OEBPS/Images/p420-002.jpg
Nttp://www.google.com:80

OEBPS/Images/p153-001.jpg
JAVASCRIPT 04/ /comparison-operator. js

var pass = 50; // Pass mark
var score = 90; // Score

// Check if the user has passed
var hasPassed = score >= pass;

// Wirite the message into the page
var el = document.getElementByld(*answer');
el.textContent = 'Level passed: ' + hasPassed;

OEBPS/Images/p501-001.jpg
<div clas

<div class="modal-content">

</div>

</div>

<button rol

stton® cl

'modal-close">close</button:

OEBPS/Images/p170-001.jpg
KEYWORD. ‘CONDITION (COUNTER)
L I
r

for tvar i=0; i< 10;
document.write(i);

} T

£ODE TO EXECUTE DURING LOOD

NN
CURLY BRACE

-i++j {‘

R

OEBPS/Images/p557-001.jpg
var prices = |3, 1, 5, 4, 2]; // Numbers stored in an array
prices.sort(function(a, b) { // Two values are compared
return a - b; // Decides which goes first

D;

dontmove

ashouldga beforeb a should go before b ashould go after b

== =il Deile il A=il=
a_-h =<0 a_h =<0 a-h=>0

OEBPS/Images/p324-001.jpg
$('11').each(function() {
var ids = this.id;
$(this).append(' <em class="order">' + ids + '');

1)

OEBPS/Images/p049-001.jpg
L 4

Constructive & Co.

WELCOME!

OEBPS/Images/p405-001.jpg
confis/ecsepie. s

@ stunction() ¢ {7 When the UM is ready
@ var tines: // Dectare alobal variasle
Sajar(l 77 Seup roquest
befareSend: functen (xhr) 77 Before repesting data
i (xnr.cverrideltinelyoe] | 17 11 supportes
b
13
// FUNCILON 1HAI COLLECIS DAIA FRUH IHE JSUN HILE
@ fanction ToacTinetabiz() | 47 Declare function
$.¢2tJSON{*data/example. ison'} 4 Try to collect JSON data
o et nact sG] 2710 surcss ol
< tines = cata; 47 Stare 1t 1n a variable
@{)ofail(tunctionf) | 74 It a problem: show message
' B('#evenl'). hnl {'Sorry! Ke could rol Toad the Linetable al Lhe moment');

@ toadlinetasle(); /7 Gall the tunction

OEBPS/Images/p307-003.jpg

OEBPS/Images/p580-001.jpg
Genres.
can
 Animation
P e—

< Shorta

OEBPS/Images/p307-004.jpg

OEBPS/Images/p580-002.jpg
Create varlables:

A
S e o T A

Evenf

hange on element with id of al1

FUNCTION: updateAl ()
Checks or unchecks all checkboxes
LOOP THROUGH EACH CHECKBOX

Set checked property to match
checked property of select all

o 060 o

GO TO NEXT CHECKBOX

LOOP THROUGH EACH CHECKBOX

Event: change on genre checkboxes
1

FUNCTION: clearl10ption()
Unchecks the ‘all option
Get element user clicked on

¥

o Is It not
checked?
Deselect the all’ option

N ——

OEBPS/Images/p307-001.jpg

OEBPS/Images/p307-002.jpg

OEBPS/Images/p003-006.jpg
summary

OEBPS/Images/p003-001.jpg

OEBPS/Images/p003-003.jpg

OEBPS/Images/p003-002.jpg
ACCESSING ELEMENTS

OEBPS/Images/p003-005.jpg
LooPNG e

OEBPS/Images/p003-004.jpg
CREATING OBJECTS USING CREATING MORE
CITERAL NOTATION OBJECT LITERALS

OEBPS/Images/p153-002.jpg
Level passed: true

OEBPS/Images/p331-002.jpg
Item: honey
Status:important
Event: mouseover

OEBPS/Images/p331-001.jpg
@©
@
)

s(n

var Tisciter, itemStatus, eventType:

$(u1t).on(

click mouszover .
srot{sfour) ',

{stetus: ‘iwportan'|,
Honfe) |
TisiThen = Tl = o Lange! . Lexl Conl o
ftenStatus = *Status: ' | e.data.status
eventiype - ‘tvert: '+ e.type;

$("Frotes")b (1isUlon + | LenSLatus + e

tabr j>

Type)s

<07/l fovsnctsTogation. s

OEBPS/Images/p468-001.jpg
T e pe———— Z

) avascriotoook.cam/code c10/

Find the area of a wall:

1 height

n Elements Network Sources Timeline Profiles Resources Audits | Console |

8 ¥ <toplame> v

> width = 3;
3

> heighe =
5

» area = width « heioht;
5

OEBPS/Images/p315-003.jpg
<07 et -t -nece. 35

reskfgs e

temHT — S(°14") .t ()5

o~
(1) cappend('<iot 1 S1isLILenlTNL (</i1): Ls

balsamie e e

OEBPS/Images/p315-002.jpg
JAVASCRIPT <7 et frament 55 T

var $1iseTaxt - §{"u s ey
SCul')append{'<p>* 1 §1is Teal

balssmicvinegar

i o v

OEBPS/Images/p565-001.jpg
AVASCRIPT s fsore-tame. s

@ S(*.sortable’).sach (furction(}
@ e Stable - B(ihis); 47 This sortaile Ll
3 uar Stbocy = ftable. ind(" thody’ // store table bosy
(5 Var $contros - $table, tind{ th'); 7/ store table hezders
® var roms = Sluody.Tind('Lr'} . LoArray[); ¢/ Slove srray conlaining rows
@ scontrals.on('click’, function() [4/ Whan user clicks on a header
@ var $hesder = §(tnis); 7/ Ger the neader
© var orcer - $header.dats('sort'): 7/ Get value of sata-sort attribuce

var colums /¢ veciare variable czlled colum

/{17 selected iten has ascending or descending class, reverse contents
® it (Sheader.is(*.ascending') || Sheacer.is(".descending’)) {
@ Fiisater Longl<Class{ 'sscend ny descending'); /¢ Towle Lo olher class
@ Stbacy. apoens (rows .reverse()) /] Reverse the array

else | ¢/ tnerwise pertorm & sort
® §neacar, addclzss ascznding' 7 A Clzss to header
/i Remove asc or desc from a1l other headers
@ S 17 fngs () romvedLass (s cnding (escering') s
® 11 (compare.hzstunProserty(order]) { // If comare obect has methad
® calum - Scantrals, index(this) s 7/ Search for colum's ingex ro
@ vows.sort{function(z, b) { /7 €all sorc() on rows array
@[a - §(a).inc("td") .eq(colum) .text{}:// Get Text of colum in row @
3 b = $(b].Find(1d") .cq(colum) . Lexi (/7 6L Lok of colum in row b
@® veturn compars [order] (a. b /i €all compare meth
s

$tbody. sppend(rous)s

®

OEBPS/Images/p315-004.jpg
07 sl exl-au. s

tenText - 5(11°)rant ()5

S0 append (<> 1 SislIlerText 1 <ji50s

T —

e —

[T ee—

BT VNER o

OEBPS/Images/p315-001.jpg
JAVASCRIPT 07735 g8 eml-fraguene. 35

var $195T4T $('w 0] heml (g
S{'ul") .append (§175tITML) 5 ainenuts

reshtigs

OEBPS/Images/p395-001.jpg
Ciavascairt | o0 jarinois

@ S Erogisieron{ i, futione) { 74 Wen farn s sl Ued
@ e.preventdefault(): 7/ Prevent 1t betrg sent
@ var cetails - $("4register') .serialize(}; /i Serialize forn data

@ $.post('reyster.ohp’, detalls, function(data) { // Usz $.00st() to send 1T

® SCéregister).ntnl (data); {/ Where o disalay result
s

OEBPS/Images/p492-001.jpg

OEBPS/Images/p252-002.jpg
Arefzrence
lc the COM
elemsn:
b oilen slore
in 2 variable.

furiclion ceckUsermane() [
/{ code to check the Tength of username
¥

~{var el - document

el.onblur = checkUserrame;
S
Thesvent name: if preceded by the vioid "sn

getElerentByld(*usernane’

The code starls
by defingthe
vamed funciion,

T function
the
e, but
the parentheses
ol

OEBPS/Images/p218-001.jpg
text:
figs

OEBPS/Images/p236-001.jpg
sutst Kinge/nis
sy srocertesc/in

OEBPS/Images/p218-002.jpg
em text:

| figs
text:
fresh

OEBPS/Images/p080-001.jpg

OEBPS/Images/p600-001.jpg
INDEX ELEMENT

0 elements.name Yes

1 elements.email Yes

elements..password Yes

elements.conf-password Yes

elements .birthday Yes

elements..parents-consent If under 13

e iwin

elements.bio No

OEBPS/Images/p600-002.jpg
{

Name:

e
11
L

password has at least 8
characters

Confirm password:

OEBPS/Images/p325-001.jpg
@7fisisach.gs

(et in()
@ $('1").ezch(function() |
@ var ids = tis.id:

append(* <span lass=arie

@ s(in
b
i

OEBPS/Images/p511-001.jpg
“JAVASCRIPT | CULffsrphateovisuer.is

var request; // Latest image to be requested

var Scurrent; /7 Image currently being shown
(var cacte =)¢ 77 ache object

var Sfrawe = §('#pote viewr');f/ fonbiiner fan g

var Sthumbs = §(* tunt*): 7} tonzainer for fnage

@ Tunction crossCade(3im) |

,{ it (sturvont) |
G Sourrentstop(). fadedul (*sloa
)

{ $1ma.css({ 7/ set the TS5 margins for tne Tnzge

FuncLion Lo fade belveen inages
Fass in new image as carameter
It thore is currently an imge shawing
i Ston T and e TL ool

marginLeft: -Simg.width() / 2. // Negative margin of half image's width
varginTops § my.height() /277 Megaliv
0

argin of half

wige's hiigh

® $ing.stop().fadeTo('sTow',)3 /f Stop animstion on new ineye & fads in

@ swrren - sing; 71 e g becones curren inage

OEBPS/Images/p325-002.jpg

OEBPS/Images/p511-002.jpg

OEBPS/Images/p308-001.jpg
A B C D E F
' B3 B3 B3 0 2 5
S . B
a--1--1--

‘mmm 'S

OEBPS/Images/p252-001.jpg
element .onevent = functionName;
I L]

ELEMENT EVENT copE

DOM element ~ Event bound to node(s) Name of function to call (with
hodetotargEt precetsd by ward "or® no patsntheses followi i)

OEBPS/Images/p163-002.jpg
Congratulations!
Proceed to the next
round.

OEBPS/Images/p475-001.jpg
[0}

var STom, widin, leight, ar
storn = §(*scalowator);

S(*form input[type-*text*] ') on(*blur', function() [
// Tra messans only snows 17 user has entersd rumber Tess tnan 10
conscle.assert(this.value > 10, 'User entersd lass than 10°
i

S(*écalculator’).on('suomic’, “unction(e)
Copreent Dl L) s
console. log{*C1*cked subnit

widllh = §('midih*)

height = $('#nevent’
rea width * heights

7/ Tra messaqs only snows 17 user has rot entersd a numoer

consele.assert(S. ishumeric(area), ‘User enterec non-numeric value'

Sform.append(*<p>' | zrea 1 '</p>'
»

A0/ emteassort s

OEBPS/Images/p163-001.jpg
JAVASCRIPT c08/js/if-else-statement. js
var pass = 503
var score = 753
var msg;

// Pass mark
// Current score
/] Message

// Select message to write based on score
if (score >= pass,

msg = 'Congratulations, you passed!';
} else {
msg = 'Have another go!';

var el = document.getElementByld(*answer');
el.textContent = msg;

OEBPS/Images/p475-002.jpg
Q Flemenss Network Sourees Timeline Profiles Resources

o ¥ =

@ v Assertion failed: User entere: le:
(eronyrous urction)

xeeven.dispatch
Virandie

Clickes suzmit.

o frames v

than 16

Audits | Consale 02 3= H O,

luiery. 53033
ETEATIY
consola—sssert.jurl2

OEBPS/Images/p458-001.jpg
function greetuser() (
// Interpreter Tooks here

function getName() {
// Imagine this had an error
// Tt was caused by greetUser ()
}

var greeting = greetUser();
alert(greeting);

OEBPS/Images/p564-001.jpg
O 0000 ©

Ld=0-]

°

8 © 0 @ O

LOOF THROUGH EACH SORTABLE TABLE

Szbady: <tbody> element
Scortrels: <21- elements
T Ay of <L slements

+

ik on <20 sloment.

ANONYMOUS FUNCTION:
Sorts data based on headle clicked

Create variables crrom clicked header:
Déager: tha haader that was ciicked on
ordor: value of Cata sort attrlbuto.

‘Wil held index of clcked header

¥

o <iz=p» o
| |

Jddcizssof g Togglevaius of
ascencingto <tr> @ class atirbute
i i
Remave sscendng
or gaccera g from
allcther headors

L — 3

>
it

<ollam set to stors Index number of
element dliched on

1
Sort rows using compar
i

316 toxt trom first row being compsted
& b1z toxt From socond row
]
Lise compara abjact to compara 2 and b
ueing mathd spacitiac in ordar variable
I

Appand array 1o < by slemant

function

OEBPS/Images/p547-001.jpg
i cer-tags s

@ (tunction() {

e

PR QOO

®

var $ings = §('#callery ing’)

// store a1l fmages

var $urtans - S(Abuttons) 5 77 Stara buttans elcnent

var tagqed = {1 [/ Create tanged object

Sings.cacn(funcLion(] | /7 oo thrangh g ond
var g = tis: 7/ Store fmg 7n vartabl,
var tags ~ ${this) gata(*tags'}s 77 et this element’s tags
1 (tans) { 7 1f tne element had tags

tags.spiitl’,

. “orCach (“unction(zaghams] { // Spiit at coma and

i1 (Lagged| Laghume) = 1) | 01T uhject docsn’ 1 have Lag
taggedtaghanz] = [15 /1 Add empty array ta objec
1
] Laghome | s 1) 5 /7 M the image Lo the

bH
/4 Bullans, cvenl handlers, and Tillers gu here (soe pisn)

0):

OEBPS/Images/green-fill006.png

OEBPS/Images/green-fill005.png

OEBPS/Images/green-fill008.png

OEBPS/Images/p396-001.jpg
Exchange Rates

88 UK: 20.00
=Us: 3599
AU 3999

Last update: 15:34

OEBPS/Images/green-fill007.png

OEBPS/Images/p396-002.jpg
Exchange Rates

Sorry, we cannot load rates.

OEBPS/Images/green-fill002.png

OEBPS/Images/green-fill001.png

OEBPS/Images/green-fill004.png

OEBPS/Images/p073-002.jpg
Efﬁﬂ/ Uhiter

OEBPS/Images/p379-001.jpg
Ciavascriet | /st Wil o

@ var xhr = new XMUittaRequest /i Create XHUIttpRequest object
@ sr.onloac = functien() { 77 When response has Toaced
77 The follewing condiLional eheck will not work locally only on o server
§fixhr. staws === 200) | /i F server status was ok

®
® documnit.gel

BTt coniont*) . innereHTHL = xhevespanseTesds 7 Update

(@ xhr.open('LT* data.noml , true): 7/ Prepare the request
G e seminin); 77 send the reguest

6 Finally Ure page s updated: duumentge Elem=r(ByTd{ canten '), nnerKTHL ~ ghr. respornseTexts
o o e

OEBPS/Images/green-fill003.png

OEBPS/Images/p073-001.jpg
JAVASCRIPT <02/js/update-array. js

// Create the array

var colors = ['white',
‘black’,
‘custom'];

// Update the third item in the array
colors[2] = 'beige's

// Get the element with an id of colors
var el = document.getElementById('colors');

// Replace with third item from the array
el.textContent = colors[2];

OEBPS/Images/p090-001.jpg
A A B e LT S A

function sayHello() {
document.write('Hello!"');

}

'CODE BLOCK (IN CURLY BRACES)

OEBPS/Images/p163-004.jpg
? IS score >= 507 ?
T T

Try again... You passed!

OEBPS/Images/p581-002.jpg
@ _(tunction(){

@

var form
var elerents
war Lo
var all

orm.elenents:
- cluments.genre

function updateAll() {
Tor {var
eotions[1].chacked - 21 .checked;

+

addbvenl (111, chinge*, wlalenl 1)y

function cleara 1optionie) {
var tare = e.target || e sreElementy
I (1arget.checked) {
alloeoecd tals

}

for (uar
Il
0

B0y 0 e entions Tengily T

adeLvert (options[1]. 'change’. clearAl10ption):

document.getClemen:hyZd('all’

05 1 < opttons.Tength; 111) {

13738311 checkboes s

document. getElementByld('nterests'); // Get form

7/ erenents 1n orm
77 Mrrags genee checidozes
/4 Tne "a11" checkbox

/¢ Loop threush checkboxes
7/ Undate checkes property

74 2 ewenl visten

7/ 8ol Larget of svent
/¢ If not chackes

7¢ Uncheck *BIL checkbox

77 Lo thregh checklozes
/¢ Add event Tistener

OEBPS/Images/p163-003.jpg
? Is score >= 507 ?

T
You passed!

continue scrip!

OEBPS/Images/p581-001.jpg
<l gt ype
<1abel><input type="checkbox”
<Lael><inpat 1 ype=" checkbor”
<label><input type="checkbox”

heckbon”

value=si1
name="genre"
name="yenr "
name="genre"

dmal 1A /el >
Value=" animazion®>Animstion</Tase >
value=" doc*>ocumenLary</ 1 bel>
value=" shorts Sherts</labe1>

OEBPS/Images/p146-001.jpg
switch (level) {

case 'One':
title = 'Level 1';
break;

case 'Two':
title = 'Level 2';
break;

case 'Three':
title = 'Level 3';
break;

default:
title = 'Test';
break;

OEBPS/Images/p152-001.jpg
oo e

] 1
(score >= pass)
[

OPERAND COMPARISON OPERAND
'OPERATOR

OEBPS/Images/p404-001.jpg
NN dats fexerpie.sor. JAVASCRIPT
{

Linets 109,007,

“titlet: *Inteo to 30 Modeltnc®
h
1
"10.00%,
“Circui| Hacking®
B
{

TS,
‘Arduno Ancics®

OEBPS/Images/p404-002.jpg
<agfduserlplions it

<div 1d-" Intro-to-30-Model ng"»
<13>Trkro Lo 30 ModeT fng=/17>
<p-Come Team now 1o create 3D models of parts you can then make...</o
</div-
<diy 1d="Crrurt-Hacking®>
<h3=Circuit lackings/n3-

e Lo the Flecto Tend Tor 1 e fnbrodaclory <olicring. .=/~
</div>
<div 1d="Arcuino-Antics'

Ao Anticss i~
<p>Learn hod To progran and use an Ardulno! This easy-to-learn. ..</p>
</div-

OEBPS/Images/p558-002.jpg
OPERATOR a RESULT ORDER

- 1 1 bcomesbeforeq
- 2 0 leaveinsame order
-~ 2 _1 acomes before b

OEBPS/Images/p558-001.jpg
OPERATOR b RESULT ORDER

- 2 -1 acomesbeforeb
- 2 0 leaveinsame order
-~ 1 1 bcomes before a

OEBPS/Images/p071-003.jpg
JAVASCRIPT <02/js/array-constructor. js

var colors = new Array('white',
"black’,
"custom');

var el = document.getElementByld(*colors');
el.innerHTHL = colors.item(0);

OEBPS/Images/p071-002.jpg

OEBPS/Images/p071-001.jpg
JAVASCRIPT <02/js/array-literal.js

var colors;
colors = ['white', 'black’, 'custom'];

var el = document.getElementByld(*colors');
el.textContent = colors[0];

OEBPS/Images/titlepage.jpg
JAVASCRIPT & JQUERY

Interactive Front-End Web Development

JON DUCKETT

Aditonst materilb:
GILLES RUPPERT & JACK MOORE

WILEY

OEBPS/Images/p101-002.jpg
PROPERTIES:

METHODS:

name
rooms
booked

aym
roonTypes

ehecka s Ty

string
number
number
Boolean
array

function

OEBPS/Images/p330-001.jpg
.on(events|, selector||, data], function(e));

D e B @

OEBPS/Images/p101-001.jpg
var hotel = { @ Er
® s

PROPERT
These are varables

Tsiite’]

on() [

return this.rooms - this.booked; METHOD
) Thisisa function

OEBPS/Images/p039-001.jpg

OEBPS/Images/p500-001.jpg
Pigeon

OEBPS/Images/p136-001.jpg
ottt bttt O ot f ol o

var today T new Date();

ASSIGNMENT
VARIABLE DECL ARATION OPERATOR DATE ORJECT CONSTRUCTOR

OEBPS/Images/p493-001.jpg
LABEL 3

LABEL 1
LABEL 2

ol
21>
mm
ki
i

LABEL 3

OEBPS/Images/p493-002.jpg

OEBPS/Images/p217-002.jpg
textContent: fresh figs
innerText: figs

OEBPS/Images/p217-001.jpg
088 - L-con L

var TiesTlam = dorumend.getFloneniByTd{tone') // Fid il TisL iton
var showTextContent = 7irstiten. texitonzent: 7/ Get valuz of textContent
var showlnrerText = firstiam. imnerText: 7/ Get value of innerText

/¢ Show the content of thesz tuo properties at the end of the Ttst
Var msg - ‘patextlantent: ' - showlextlontent + '</p's
ws 4= tepsinnerTexts |+ showlmerText s </us'y
var el = docunent.cstClementDyld(' scripsResults'):

el imerHI - wsgs

tirstltan. taxtiontent - “sourdough bread'; // Update tne tirst Iist jtem

OEBPS/Images/p020-001.jpg
= e S P e
= = G S
o GRS e AR o

OEBPS/Images/p063-002.jpg
HTM|
<h1=Elderflower</nl>

c02/numeric-variable.ntm
<div id="content">

<hz-Custom Signage</h2>

<div id="cost">Cost: $5 per tile</div>

</div>

<script src="js/numeric-variable.js"></script>

OEBPS/Images/p063-003.jpg
CUSTOM SIGNAGE

Proviews: =

MONTAGUE+HOUSE

OEBPS/Images/p063-001.jpg
JAVASCRIPT <02/js/numeric-variable. js

var price;
var quantity;
var total;

price
quantity =

14;
total = price * quantity;

= document..getElementById(*cost');

var el
el.textContent = '§' + total;

OEBPS/Images/p571-002.jpg
el{'e' + event + callback]

(L— G)y———— |

OEBPS/Images/p474-002.jpg
s Network Suurces Profles Resvures

Audits | Console |

<top frame v

o
=-14. (21207 825 128"
51 1212 7010 1222
11001 558 2108

[Ceurrry
w

st ralia”
e

Eonsale TEbIEJ5 T

OEBPS/Images/p503-002.jpg
e1/gs facda-init s

JAVASCRIPT

{runction)
© var Scontent = S("#share-gptions').dezach(): /7 Remove modal fron page
j# CMck handler to open modal

(@ §('#4snare).on(cHek’, unction() |
v0h)

@ mocal.ooen(fcontent: Scontent, width:340, heigl
n; @
0%

OEBPS/Images/p288-001.jpg

OEBPS/Images/p503-001.jpg
<1t rcdat winzow htel

“div ie "shave optiness
<I-- This 1s whers ths message and sharing outtons o -

</eiv

<Script sre="fs/iquery.js"></script>

D escript src="js/moczl-window.3s"</seripts

i e S

</bocy>
PYASTS

OEBPS/Images/p546-001.jpg
bbb

© Sings: all im:

© Sbuttons: slement with id of buttons
I

Create objec!
@ taggec: aray of tags & tagged images.
v

') LoOP THROUGH EACH IMAGE

ANONYMOUS FUNCTION:
Processes Image

Create varlables:

ing: current Image

tags: value of data-tags attribute
v

o0

Doss the tags
2] variable have
avaluer

M

LOOP THROUGH EACH TAG

ANONYMOUS FUNCTION:
Add tags & images to tagged object

Is this tag
aproperty of the
‘tagged oblect?

@ Add tag name as a property
of the tagged object

1
12} Add image to array for this tag

60 To NEXT TAG —————
T |

OEBPS/Images/p571-001.jpg
ASCRIPT

£/ Helper Canction Lo add an event 1isloner
(D) function acdEvent(el, event, callback) |

o

it (*zddcventlistener’ <n el) | /
el addFuent | istoner(sveriL, vl Thack, false) i/ Use i1
@)elsa [// Otnerwise
el['e! + event + callback] = callback: // Make callback 2 metnod of el
€lf'e’ | avent | callback] (window.event}; // Use 1t to call prev func
@ elollachFuniCon’ o+ csenl, el lvenl = crtThack)y /7 lse al bchFent ()
' 4/ 0 call the second function, which then calls the first one

OEBPS/Images/p474-001.jpg
c10jge/zomsans savte.fe [Javasceier

var contacts = { // Store contact Tnfo in an ebject Tizeral
Londun
“Tel*: "1az (0)207 946 0128",
aunlry®: "%,
“Sydney*
FTel: '-61 (0}2 7010 1212",
*Country®s pustralia},
"t Yord': |
1% "1 (0]1 bb 2101°
“Country": "USA"}

I

® omsole. Lalile(ontacis) 3 {7 Wil dita Lo console
var iy, conlaciDels /] Beclare variatles Tor page
contaceletile - s /7 Hold details written to page
§.each{contacts, function(city, contacts) [// Loop through data to

contactetails
s
$('h2').after(*<p>' + concactbetails </p') /j Add cata To the pge

1 contacts.Tel 1 tebr >

OEBPS/Images/p503-003.jpg
“ess | i 35

amodal {
pasttion:
2-ncexs

OEBPS/Images/p139-001.jpg
JAVASCRIPT 23 s a4 Tarsnes. s

var tocay - new Data(};
@

var vear = today.getFul1¥ear(
var est = rew Date(4pr 16, 1996 16:5:55')
@ var difforence - Loday.gelTinel) esL.getTime()
@ difference = (cifrerence / 1556300000} :

var elMsq = documert.getEl ementByld('message’};
elMsg. taxztontent - Natn.floor(ditference) + ' years of cnline travel advice :

OEBPS/Images/p538-001.jpg
w85 &| max{90 8

=
NAME HOURLY RATE (5)
Camille s

Qordon ™

OEBPS/Images/p245-001.jpg

OEBPS/Images/p431-002.jpg
stPrize | 2ndPrize 3rdPrize

okt S o o renioosbind
aerial photography enthusi hﬂs.ltoomes fully configured and ready

tha i easy o carry vherever You g0, ready at a moments notice.

OEBPS/Images/p431-001.jpg
HTM| €09/jqui-tabs.html

@)<div id="prizes">

1st Prize</1i>

2nd Prize</1i>

<lis3rd Prize</1i>

<div id="tab-1"><p>First prize is

©)
<div id="tab-2"><p>Second prize i
<div id="tab-3"><p>Third prize is

</p></div>
</p></div>
</p></div>

</div>
<script src="js/jquery-1.9.1.js"></script>

<script src="js/jquery-ui.js"></script>
<script>
$(function() (
$("#prizes').tabs();

®

</script>

OEBPS/Images/p237-002.jpg

OEBPS/Images/p139-002.jpg
®)

17 years of online
travel advice

OEBPS/Images/p237-001.jpg

OEBPS/Images/p172-001.jpg
JOEEARATSh S
e

0 OO

OEBPS/Images/p091-002.jpg
function sayHello() {
@ document.write('Hello!');
B

/1 Code before hello. ..
(@ sayHello();
@ /1 Code after hello...

OEBPS/Images/p091-001.jpg
[A B

l—l—|
sayHello();

OEBPS/Images/p601-001.jpg
You need a parent's permisstion to
join. Tick here if your child can
join: m

A You need your parents’ consent

Short Bio (max 140 characters)

A Please make sure your bio does
not exceed 140 characters
A2

OEBPS/Images/p619-001.jpg
AVASCRIPT 0 fseivtnday.is

@ (tunction() {
ar §hirth
@ uar SsarentsConsent
_ war $consantContainer - S(* !cunseﬂt -containas
// Create the date picker using jQuery UI
(3 Sbirtn.prop('type'. 'text').data['type'. 'vate').datepicker({

2000 R it
s 77 Consent checkbox
7/ theckbox container

dalchormats "y, o’ 74 Sel tale: Tormal
03
([Sbirtn.on('blur cnange’, checkDate)i 7/ 0-0-B loses focus
8 fanction checkbata() (71 bectare checkbate()
© var dob - Unisvalue.splicg ! 77 sy from date
/7 Pass togaleParentsConsent() the date of birth as 3 date object
@) ‘tegalebsrentsConsent (new Data({deh[0], dah[1] - 1, dak[*]));
)
@® function togsieParentsConsent (date) 47 Declare function
@ 0 (K)ol 7 Stap i dats inwalid
@ var now = e Date(); 77 New date obi: today
/¢ 1t cifference (non minus date of birth, is less than 13 years
77 show parents conen. checkbos (dars ol account for Top years)
7/ To get 13 yrs ms * secs * mins * hrs * days * yea
@ 7t ((now - date) < (1000 ¥ 60 % 60 * 24 % 3 < 1) {
@ SconemContainer. renovecissa('wide!); /i Remove hide cass
SoarentsCansent. facus() ¢ 77 Give it Tocus
ctse 77 utnerwice
@ fconszntContatner.addClass('hide); /7 Add hida 1o class
_ Soarentstonsent.prop(checked', Talse); 77 Set checke to false

OEBPS/Images/p309-001.jpg
A B C D E F
' 3 B3 B3 3 2
2) B B8 5
‘e [

4--’:] [

OEBPS/Images/p318-001.jpg
.before() .after()
- v
item</1i>
AN

-prepend() -append()

OEBPS/Images/p209-001.jpg
ul

OEBPS/Images/p403-001.jpg
CHTmL | conjssanpie ntel

<body>
“hears
<NITIIC MAKCR DUS< /71>
“na»
<2 raf="1q-10ad 1t '>HOME

<2 hraf="q-10adz.htnl *>ROUTC
D=y Toad3hiail*=TONS </
<2 hraf="axamle.ntnl® class="current’>TIMETABLE/a>
<
</header=

<section id="contant
“div 1a "container

<ty class="tatre’s
<div “o=reuznt
< =t href="cu kil "
<m secetimy/nzp-ca.png’ alt="SE. CA' />San Francisco, CA</ax

<& “6-"tx’ href-"tx.hm) ">

<wy s g g all= N i, TE shstin, Tiejis
<& To=ny" href-ny. ol
<mg SrC-*Tma/mE0-ny . png” alt-New York, NY* /oNew York, Me/a
<t
<t

ass=nirdts
sessens'>Select an event from tne lefre/diy>

<div

<t
<fdive
“div slass=*lnine's

<div “o="detalTs=Detat 1s</div>
</dive
<pdivo<l—- feontainer -->
</secticrs<l-- fcontent

<sertot sre="fs/jauery-1.11.0.mn. 1s%</scrips
Jsfexanple.Jst/scripts

OEBPS/Images/p209-002.jpg

OEBPS/Images/p574-002.jpg
Create varlable: form holds <form> element
Event: submit on form
|
ANONYMOUS FUNCTION:
Greets the user by username

Prevent default actlon of form submitting

Create varlable:
elements: elements collection
username:

msg: welcome message

Replace form with welcome message

OEBPS/Images/p574-001.jpg
Username:

Passyvord

OEBPS/Images/p066-002.jpg
<02/booTean-variable.ntml HTM|

<h1-Elderflover</hl>
<div id="content">
<div class="message">Available:
</div>
<div class="message">Shipping:
</div>
</div>
<script src="js/boolean-variable.js"></script>

OEBPS/Images/p066-001.jpg
JAVASCRIPT

c02/js/boolean-variable. js

var inStock;
var shipping;

inStock = true;

shipping = false;

var elStock = document.getElementByld("stock')s

elStock.className = inStock;

var elship = document.getElementById(*shipping');
elship.classhame = shipping;

OEBPS/Images/p066-004.jpg
? test s performed ?

OEBPS/Images/p066-003.jpg

OEBPS/Images/p465-002.jpg
G Mex i Sosktmarks

Show sippet o

Show Exendion Bdr

St Pt Jascrpt

S Timelne Recordg
Empty Caches

Dl Catnes

Diabi images
Disable Siyles

OEBPS/Images/p422-001.jpg
£

floen srorsge. s [Javasceier

() 11 {wincou.Taclstorze) |

o[var Sxsermane = cocumert. setElensntyTa(vsermare!) /) Get fom <lanents
2L var SxtAvewer dociment.gott enenty 1 (* answe:

G| Dxtleemme it < JucalSiorage gt Tt 'y
txtAnswer.value = TocalStorage.getitem(answer')

/ Flenents populaled
'/ by TocalStorage data

txtlsernane. sddCventLiszener(‘fnput ', funczion () { /7 Data saved
TocalStorege. selllem(' usernams', LxtUsername. value)s
1. false);

fxtansuer. addkvent < stener(
TocalStorzge. setltemi'answer', TxtAnsuer,yalus!
1, talse)s

input*, “unction () 4 hata saved

OEBPS/Images/p422-002.jpg
<03/1acs1-staraze.htnl (Tna only differarce i+ sassion-scarsga.html 15 the Tinc o the szript.] A

<y s Lo U
<form 13="2ppTication® action="asply.php">
<labzl tor-*usernane Nlanec/ | aoel >
<INPUL Type=" text® {d="usemans* name="usernamst >

<labal for-*znsuer"-Answer/ 1206l
“testares | d-tans e
<Inpat type='submit® />
</ fonms
</div
“seript sre “3s/lacal storage.]s

nane"an swer </ LaxLareas

OEBPS/Images/p465-001.jpg
e search

St Pt Browsing £8P
Glse Recnt History - 8@ GetMore Tools

OEBPS/Images/p143-001.jpg
csfis/essepie.is

7/ PARI 1WU: CALCULAIE AND WRLIE OUI IHE EXFLRY DEIALLS FUR IHE OFFER
var expivibs /7 Hessaoe displayed Lo users

var tosays j/ Tofay's date

var elends; // Ine element that shows the messsge zbout the otfer ending

functien offerCup:res(taday)

¢ Teclare variables within Ui funclion for Tocal scope

vir weekEronTaday, day, dole, wonlh, yrar, dagones, wonthbomess

/4 Acd 7 days tme (added in mi1liseconds)

week-romladay - new Uste(today.getlime(} + / * 21 % 60 * 60 * 10003

4/ Create arvays to hold the nanes o cavs / months

caykames = ['Sunczy'. 'Morday'. ‘Tuesday . ‘ecnescay'. ‘Thurssay',
© ‘Friday’, “Saturday'];

monzhVares = ['January’, ‘February’, 'March', 'fpril®, ‘Nay', 'June’,
© ‘July's ‘Avgust', ‘September’, ‘Uctoder’, 'Novemoer', 'December i

47 ColTert e parts of e date (o shoa an e pe

cay - dayNares [weskTranTosay.gethay (1]

cate - weakkroml oday. cetbate(

wonl = montNanes weckFronToday e ar th() |5

year = weskIronToday.etlul Year();

4/ troate the message

ExpivgNsg = '0TTer exsives next '

expirylsg += day + ' <br /(' + date+ ' ' +wonth + ' '+ year +)';

eetuen expinyHsgs

Luday = new Dale(77 Pul Luday's date in variable
€lTnds = docurent . cetCimentDyld('offerCrds'): // Get the offerCrds elenent
alends. innerH I~ offerkxpives (today) 5 /7 Add the expiry message

¢ Tinish the immeciately invoked functicn exoression
ms

OEBPS/Images/p100-001.jpg

OEBPS/Images/p070-001.jpg

OEBPS/Images/white-bull.png

OEBPS/Images/p216-001.jpg
<11 id="one">Tresh figs</l1i>

11— attribute

document .getElementById('one').textContent:

OEBPS/Images/p402-001.jpg
7 HOME ROUTE T0YS TIMETABLE
IR\
THE MAKER BUS

Roll up! Roll up! it's the maker bus...

Qm v i [

1520 BrinHacking

AUSTIN,TX " gt il oo,
. o oy [

oba s mec-atreics, i ol amners

o sietroric oo s rour g hewore

ThrinedLusch Tk R e
— e s s
Dnign e i e

End nsnuzor

300 Ciaithacking

MakeTeFahure

OEBPS/Images/p494-001.jpg
Event: click on tab

ANONYMOUS FUNCTION:
Shows/hides the corresponding panel

Prevent default action of button
Get button user clicked on

1
Get accordion panel after that button

0 mix @
%

? Is panel visible? ?

Show panel Hide panel

OEBPS/Images/p064-004.jpg
© "hello" @ "hello’
® 'hello' © 'hello"

OEBPS/Images/p064-003.jpg
Howdy Molly!

OEBPS/Images/p064-006.jpg
© 'See our upcoming range'
© 'See our
upcoming range’

OEBPS/Images/p064-005.jpg
QO nwin@Qwur»
&0

OEBPS/Images/p137-001.jpg
MEIRoR

MHESCRIPTION.

ge Dat ()
getlay()
getrullvezr()
gemHours ()

getHilliseconds (]

geMinules()
gezhontn()
gezseconds()

geLTime()

gerTimezonzofrset)

tobatastring()
String()
roSteina ()

LT

welate(]

stFulYear()
setdonrs ()

sathi| | Tsecands ()
selinutes()
sethonth(}

setseconds ()

setTine()

Returrs / <ets the 42y of the month (1 31

Returns the 33y of the week:

)
Returrs sets theyear (¢ digts

Returrs / cets the anur (0 73)

Returrs / sets the msezcres (C-995)
Returrs / cets the mvtes (0-59)

Returrs / sets the marh (-

Relurrs / sels e seconds (

Nuoer ot = liseconds since Januz 1,19
00:30G0 UTC (Coordinated Uriversa T
and = negatics number for any Hime. n<are

Returrs Hime 7one ofzet Inmins for lacale
Returrs "date” as 3 human-reacable sting

Relurrs " sua b urian-readee sting

Rabios i ok v Fa BTk seriine this soecified data.

OEBPS/Images/p021-001.jpg

OEBPS/Images/p064-002.jpg
<02/string-variable.ntml HTM|

<h1-Elderflover</hl>
<div id="content">
<div id="title">Howdy
friends/span>1</div>
<div id="note">Take a look around...</div>
</div>
<script src="js/string-variable.js"></script>

OEBPS/Images/p064-001.jpg
c02/js/string-variable.js JAVASCRIPT

var username;
var message;

username = 'Molly';

message = 'See our upcoming range';

var elName = document.getElementById("name');
elName.textContent = username;
var elNote = document.getElementById(note');
elNote.textContent = message;

OEBPS/Images/p473-001.jpg
var Sfor = §{*fealzulatar')3

Sform.on('subrit', function(e) [
Copresent e L) ¢
console. log{*Cl<cked submit...');

war wildh, height
widzh = §('wideh').val()
height - ${ #nevent'Joval (s
area = width * hetght;

comsoTegroug (At cTeulil ions ') s
console.info(Width ', wideh
corsole.info(keight ', height]
corsole. o (arez)

conscle.crouptnd():

Horm.appznd('<p>' | zrea 1 </
»

s feonsuTe-rou. s

/{ Runs when submit is prassed

/4 Snow the dutton was clcked

Jf Starl graup
71 Wrtze out the width
/{ Write out the height
7/ Write out the area
7/ Tnd aroup

OEBPS/Images/p430-002.jpg
- taeprize
First prze s your veryown DJl Phantom - a sl lln-one
‘quadcopter dsigned for aeralprotography enthststs.
flly configured 0y, Both compact and sty the
highly s meanstht 16 eay to
0. rescyata rotice.

+ anaprize

OEBPS/Images/p473-002.jpg
Q Flemenss Network Sourees Timeline Profiles Resources

© ¥ wofames v
Clickes: susmit...

v Area colaulations
ot 1

consclegroup.Js:12
coneclesroup.e:13
comacle proupjstis
coneplesgroiiin:is

OEBPS/Images/p430-001.jpg
c09/jqui-accordion.html

o}
@
®

©
©

<body>
<div id="prizes">
<h3-1st Prize</h3>
<div=<p-First prize is the DJL...</p></div>
<h3-2nd Prize</h3>
<div-<p>Second prize is the
<h3-3rd Prize</h3>
<div><p>Third prize is a...</p></div>
</div>

</p></div>

"js/jquery-1.9.1. js"></script>
35/1.10.3/jquery-ui. js"></script>

<script>
$(function() {
$(*#prizes’).accordion();

</script>
</body>

OEBPS/Images/p058-001.jpg

OEBPS/Images/p317-001.jpg
Ciavascaiet | s feta

s(functton() ¢

@ §('Tizcontains(*pine®)') texc(‘amonds');
0 1.hot").btm (function() |

m{

vetam ‘<em' 1 §{tnts].text(] 1 '</em's
ns
G FClikonet) ez ()5

OEBPS/Images/p317-002.jpg

OEBPS/Images/p350-001.jpg
$(window) .height ()

$(document) .height();

OEBPS/Images/p393-001.jpg
s it-oet. s
@ S(“fseloctor a).on('lick!, furctim{e) |

@ e.preventderault();
() var queryString - 'vote-' + event.targst. id;
@ §.0et(votes.php', quarystring, function(cata) |
® s(éselector).ntnl (da
0
i

OEBPS/Images/p393-002.jpg
| (This HNL 15 crested by code inside the 95 Fi1e.]

“eiv class

third"><a fre*-"vote,phpivote-grzy"s

<ing sre= i/ Lyray.ong® id="yray’ all="yray" jr<ja></div>
<6iv class="third"
iy sr=" g/ gl T png® TEmy ot alL=myel lon® (e fase/divs

<ely Class='third*>
<ty STe-"ing/t-green.png’ Td-‘gresn’ zIT-"green’ jc/ae/aiv

OEBPS/Images/p393-003.jpg

OEBPS/Images/p618-001.jpg
© 0 0 0 o

°

©

Create varlables:
Sbirth: birthday text input
SparentsConsent: age consent checkbox
SconsentContainer: age consent container
1
Create date picker using JQuery.
+

Event: blur or change on birthday.

FUNCTION: checkbate ()
Checks user's date of birth

Create varlable: dob: the date of birth as
an array (split into year, month, & day at '
characters)

1

Call function: toggleParentsConsent () &
pass It a Date object created using dob array

FUNCTION: toggleParentsConsent ()
Shows/hides parental consent based on age

s catea
Q@ i @

Create a new Date object called now
(subtracting dob from now gives age)

¥

Was birthday
<13 years ago?

|® 0]

Addhideclass Remove hide class
to consent from consent
container container

| 1
Set checked on Give focus
consent checkbox to consent

to false checkbox

OEBPS/Images/p165-002.jpg
Second of three -
keep going!

OEBPS/Images/p165-001.jpg
JAVASCRIPT <08/js/switch-statement. js

var msg; // Message
var Tevel = 2; // Level

// Determine message based on level
switch (Tevel) (

case 1:
msg = 'Good Tuck on the first test's
breaks

case 2:
msg = 'Second of three - keep going!

case 3:
msg
break;

Final round, almost there!';

default:
msg =
break;

Good Tuck!

}

var el = document.getElementByld(*answer');
el.textContent = msg;

OEBPS/Images/p423-001.jpg
0o urestor .o
@ 17 (window. soss Tonstorage) |

B[coniistmmse - mommgiiosmmstyail s [o o s
i D = e BT answer)5

(o[tatUsernane.zlue - sassionStorage.geziten(usernans'); / lements sopulated
S Calbrsmer.value = sess ionStovae. gelTLen answer')3 /7 by sess lonSLorage

Irldis WFyenLl isten
sessionstorage. setiten usernane’,

(timput ! function () [// Save data
tlisermane.value) ;

Jo talse)s
@
txtAnsaer.adeCventLstener ('input’, furction () i1 save data
sessiarstansge. ot (fon{ amser ', Ex-nsuer. valie) s

}, false);

OEBPS/Images/p423-002.jpg
What would you like to make?

Name

OEBPS/Images/p092-001.jpg
PO AR SRS

l—l—|
function getArea(width, height) {
return width * height;

THE PARAMETERS ARE USED LIKE
VARIABLES WITHIN THE FUNCTION

OEBPS/Images/p466-001.jpg
800

[T S ——

& = C [[javasiripthook com; code 10 ecrars himl

Find the area of a wall:
o vidth

1 height

Q Clements Network Sources Timeline Prof es Resources Audits |Console o1 Y= b T, x

8 T top frames ¥
© Ucauit SytexEr v e e when TLLECAL

OEBPS/Images/p171-003.jpg
1++

OEBPS/Images/p387-002.jpg
The bus stops here.

L A3

smppeach ey
e

OEBPS/Images/p171-002.jpg

OEBPS/Images/p387-001.jpg
JAVASCRIPT W W s o con/ s/ sonp. s

shoFunts(|
“events": [
*lacaLion
*daten:
“map*
I8
(
“locztion®s *Austin, IX*,
“datz": ‘May 157,
*map": *ing/map-tx.prg*
Is
{
“locstion”s “Mew York, NP",
“dat=": "May 30°,
“map': "img/map-ry.png*

£ USan brancisn, €

OEBPS/Images/p472-001.jpg
c107ge/comsans metrots. 5 [Javascaier
(1 consale.info("&nd we're off... 7/ Tnfos script running

var form, width, height. areas
$rom - §{*Fealeulator')s

$(form fnout type=teext®]*)en{'olur, function() [// Cn blur avent
consalewarn(- tou sntarer , this.alin)s R R ——

D

5(% tor') on{*sumit’, function(e) (/i Wnen form s subritts
e.oreventDelaul Li}s

width = §('swtdtn').val(
hefght §{Eheight J.val{

arsa = widUl * helgh
consale.error{area) /i Errors show area

Starm.apnand('ep class—"resultts + area + 'e/ps)5

b

OEBPS/Images/p065-001.jpg
<02/js/string-with-quotes. js

JAVASCRIPT

var title;
var message;

title = "Molly's Special Offers";

message = '25% offl';
var elTitle = document getElementById(*title’);
elTitle. innerHTML =

var ellote = document.get[]emenLById('note‘);

elNote.innerHTML = message;

OEBPS/Images/p238-001.jpg

OEBPS/Images/p171-001.jpg
var 1 = 0:

OEBPS/Images/p065-003.jpg
Ef%ﬂ/éyweﬂ

OEBPS/Images/p323-001.jpg
s s

S(rumt
(D var backeroundColor =
@ §('u1").asperd('<a>Celor vas: * ~ backerourdColor + '</a

{114') .css(*background-caiort);

(]
backgraunc-color': '#c5a096
“1px solid #51F",
$000"
‘font-famly': Georgial,
paiing (0TL s g
0s

OEBPS/Images/p065-002.jpg
HTM c02/string-with-quotes.htm

<h1-Elderflower</hl>
<div id="content">
<div id="title">Special Offers</div>
<div id="note">Sign-up to receive personalized
offersl</div>
</div>
<script src="js/string-with-quotes.js"></script>

OEBPS/Images/p323-002.jpg
pine nuts

honey

balsamic vinegar

OEBPS/Images/p287-001.jpg
JAVASCRIPT

funcLion setmp() |
var texclnpu
textinput = cocument.getllementByld(message
Lax gt . T s)

window. sddEvontLisLener('DO0HConLen Luaded! , satup, Talse)s

wiridow. adr vent | s ener(beloren o, Tunction (avent)
r2Tum 'You have chanes that have not been saved..

OEBPS/Images/p287-002.jpg
PROFILE

PR

[Stay on Page Leave Page

OEBPS/Images/p502-001.jpg
Create varlable:
Scontent: part of page to appear in modal

Hide that part of page by detaching It

Event

Tick on share button
1

ANONYMOUS FUNCTION:
Show content in modal window

Call open() method of madal oblect, then

pass It the Scontent variable as a parameter,

along with the modal’s width and height

OEBPS/Images/p545-001.jpg
CHTmL | ctppiTter-tegs el

<bedy>
<heacer>
<hl=Creativalolks/hl>
b
<diy 14="auttons </elve
“div id-"gailery"s
<tmy sro="img/pl. jpn" data-tags='Animators, [Vustrators® alt="Raboit* />

<im src=*ing/p2.jpe” dsta-Tags='Photograshers, ilmakers! al /-
<img p3.ip9" dila [igs~Phalograohers, Filmokers? all=Deor
<im) dot Lags= Designers® o1="Now York SUreet Hap® />
<ima . 3pa" data-tags=T*mnakers” 31c="Trumpet Player® />
< et img L 2" oL g Designers, T all=" o et >
<Im src=*1mg/E7. 107" dsta-Tags= Photograshers* alt="Sicycle Jzpan' />
<img img/pd.Jpg" data-tags-'Designers” alt-"Agua Logo" /=
<ima it img i, e il e Animalars, Tustrators® ol 1= Ghist® >
<jaiv-

<serint are “gs/jquery.
<scriot sre='s/TiTter-tans. Js></script>
</ooty-

wfacripts

OEBPS/Images/p576-002.jpg
e

Create varlables:
O i i
chk: chech

v
T
Event: change on checkbox
ANONYMOUS FUNCTION:
Changes value of password's type attribute

Get element clicked on

1
Try to process following code block

? I it checked? 9
lo o|

Settypetopassword Set type to text.

catch:
QO e @

IE8 can't switch types

Display message:

OEBPS/Images/p576-001.jpg
Username:

Passyvord

 show password

OEBPS/Images/white-rtrif.jpg

OEBPS/Images/p118-002.jpg

OEBPS/Images/p118-001.jpg
PROPERTY:

room1 420
} room2 460
> room3 230
t room4 620

OEBPS/Images/p037-001.jpg

OEBPS/Images/p592-001.jpg
BERGIE PIESSAGE PORAN EMAIL INEL L IR CEneiME:

[EJ Plecse enter an email adcress. |

ERROR MESSAGE FOR AN EMAIL INPUT IN FIREFOX:

—

Please enter an email address.

21
22
2
24

Nepmnter
Decerber
Jaruary
Fotruary

March

203
2014
2015,

2018
2017

OEBPS/Images/p479-002.jpg
Q. Elements Network | Sources Timeline Profies

B oreakponts s

sk Cre k= O
p

5]

3
451 zemcutator) on(subnzt

5| consote. Los(" Clicked subnit. .

5
7|t — 60 Badt vkl
s = 3Careigni Luall)

H il e
0|

It gares < 1o8) {

2

2

£} Line 12, Calumn 1

furctionce) ¢
0

[

=]
ot)
* WacrBomsons
* Call Stace
» Scope Varizbles
* Breakpoinis
» DOM Breakain
¥ XIR drezksoints
"+ Fvent Listener Breakpoirts
» Werkers

)

OEBPS/Images/p479-001.jpg
A0/ brsatpuins s

var STom, widin, beight,
storn = §{*écalowator);

S(*écalzulator®) on("summit’, Sunction(e) {
e.preventdefault();
console.log{*Clrcked subnit..."):

Wit = §(awtdth').val ()
height - ${ #nevent'J.val (s
arva = (widlh * Leight)s

if (area < 00) (
debunger; J{ & braakpoin= 1s sst 1f the developer tools are open

+

$form.append(*<p>* | zrea 1 '</p');

OEBPS/Images/p061-001.jpg
quantity

VARIABLE NAME

:
Il —3

s
4 I
3 E
5-[00 o
< E
s
3
=
C

OEBPS/Images/piii-001.jpg
Try out & download the code in this baok
www.javascriptbook.com

OEBPS/Images/p278-001.jpg

OEBPS/Images/p505-001.jpg
CULfgsmodaT-windon. s

@ var roczl - (runction() { {7 Veclzre modal objact

war Swinin = $nindow) s
var $modal = §(<diy class="nodal"/> 4/ Create markus Tor mosal
Var Scontant - S(*<div class-"modal-content* /')

var §lose = §(’<oution role="button® class-modal-closs'>close</buttons'];

Smoda.apnene (Scontent, Sclose) s /¢ 84 lase button to modal
$close.on("click!, Tunction(e) { /7 1f user clicks an close
e.preventlietault () 77 Prevent link dehavior
St T 77 Clase (e w1 window

ns
vetum | /7 ke coe to modal
certer: furction() { /¢ Define center() metnod

47 Galculate distinee o Lop and (e1t of winoe [0 center e md)
¥2r top = Natn.max(Swindo. hefant () - $modal outerketant (), 9} / 2;
var 12Tt = Meth.max(Swindon.widthi) - Smodal.outerkidch(), 0) / 2;

S5 | £¢ Sel 0SS for the mdil
top: toa | futnow.serolTTop(), 7/ Center vertically
lefts Iaft + Swindow.scrol ILeTt () 7/ Genter rorizontally
s
open: tunction(settings) { /7 betine apen() nethos
fcontant.zwpty () .2ppend(settings.content]; // Set new content of modal
$moda .55 /¢ et magat dimensions
alcth: settings.aidth || ‘avto’, 77 set width
height: settings.height || 'auto’ 77 set height
1)-apmencTo{*dy) s YL e page
madal .certer(); 7/ Gall center() nathos
$aitdon) on(resize’, il omter) s 74 Sl L ET winduw ves e
close: function() | /7 Define close() meths
Sromtent iy ()3 7 Hemove com el Fron w1
Smodal .detach()5 7¢ Remove modal rom pare

§(windon) ,o7f(‘resize*, modal .cenzer) 7/ Remove 2vent handler

OEBPS/Images/p537-002.jpg
AVASCRIPT

o]

S(function()
/¢ DATA ABOUT PEOPLE GOES HERE {shown cn ps34)

4 THE FUNCTION ACTS A A FILTER
function orceRange(person) | // Deciare priceRange()
velien (person.rale = 58] & (persar.vale <= 0)5 /¢ Tn range relorms Ly

b

47 FILIEK IHC PEOPLE ARRAY & ADD PAICHES 10 HE RESULIS ARKAY

var rasults - [/i Array for matching people
vesults - peoale,filter{priceRange); 71 Titer() calls priceRange()

/¢ LOOP TIIRCUSI RCSULTS ARRAY &HD ADD MATCIITNG PLOPLE TO TIC RCSULTS TAGLE

exfss fitter-ritser s

OEBPS/Images/p537-001.jpg
(et in()
/¢ DATA A30UT PEOPLE GOES HERE {shown on ps34)

/¢ CHECKS EACH PEASOK AND fDDS THOSE IN RMNGE TO ARRAY

o

var vasults =[5 // Arry for pzople in rance
popl. forCacn(unction{person) | 77 Tor each person
i (person.rale == 6 8% porson.rale <= 90) | /7 Ts rae in eing
Q| vesults. push(sersan) : 7¢ 17 yas 2dd to array

i

7/ LUOP HROUGH KESULIS AJRAY AHD ADD MAICHLNG PEOFLE 10 IKe RESULS IABLE
it

OEBPS/Images/p045-001.jpg
Constructive & Co.

For all orders and inquiries please
call 5553344

OEBPS/Images/p076-001.jpg
NAME OPERATOR

ADDITION o
SUBTRACTION =
ovsion 7
MULTIPLICATION =
INCREMENT ++
DECREMENT o
MODULUS %

PURPOSE & NOTES

Aus one valug Lo anolher

Subracts one value frem ancther

Divides 42 values

Multples 2wa values Using 21 asterisk.
(Mot thal Ui is nol Ure lelter <)

Subtractsane from the current rumacr

Divides Lo values and relurns s
ey

RESULT

15

OEBPS/Images/p045-003.jpg
®

Constructive & Co.

GOOD AFTERNOON!

OEBPS/Images/p045-002.jpg
L 4

Constructive & Co.

OEBPS/Images/p335-002.jpg

OEBPS/Images/p335-001.jpg
RIPT s aninae.s

S(runction() ¢
$('19).0n(clice’, function() {

@{ 5(tnis).animate({

5 waacity: 3.0,

© 10, et [

@ $(ths).remove ()

OEBPS/Images/p077-001.jpg
JAVASCRIPT <02/js/aritnmetic-operator. js

var subtotal = (13 + 1) * 55 // Subtotal is 70
var shipping = 0.5 * (13 + 1); // Shipping is 7

var total = subtotal + shipping; // Total is 77

var elsub = document.getElementById(’subtotal');
elSub.textContent = subtotal;

var elship = document.getElementById(*shipping');
elship.textContent = shipping;

var elTotal = document.getElementById('total');
elTotal.textContent = total;

OEBPS/Images/p077-002.jpg
RESULT

Efﬁﬂ/ it

OEBPS/Images/yellow-disc.jpg

OEBPS/Images/p149-001.jpg
ol e

l—l—|
if (score > 50) {
document.write('You passed!');
} else {
document.write('Try again...');

}

OEBPS/Images/p102-001.jpg
var hotel = {

PROPERTIES

inction() |
return this.rooms - this.booked; } |- uemson

OEBPS/Images/p433-001.jpg
cosigstaminit g

@ s(function()

@ §('#arrival’).datepicker(); // Turn input to JQUI datepicker
& var szmount = $(*fancunt)¢ / Cache the price input
var Srangs - §(Jnrica-range'); /7 Gacha Tha <divs for the price range
$('#price-range’).sTider({ // Turn price-range input into a slider
rarge: true, // 17 it is a range it gets two handles

0 0, 7/ Wntmm value

77 Maximun valus
@ valuess (175, 300], 77 Uatues 10w when e poge Toads
slide: function(event. ui) [// When sTider used upoate zmount elemert
Semount.uzl (6 + ot values[0] + * - §° - uivalues[1])
0
St 7 Set it vilues of anon <omnl
18" - range.slider('values'. 0) // &S sign then Tawer range
S8 frange.stider(‘values®, 1)) 77 85 <ign then higner ranga

)é

OEBPS/Images/p561-001.jpg
<ty
@ <tablz class=*sortanls
“thaads
“irs

Tane" ~Genre</th-

® <oh datz-sort="name’>Titles/th
% <l dals sort="dural fon*>Mural ian</ (>
<Tf datz-sort="date'>Date<;/th>
<jtr
</l
<tbody>
i
<e>Antmations/td>
zowil1dfood</ tc>
“oe2018-07-16< td>
<jtr=

o Ime /1
<2ceIne Deers/ta-
L2t/
<20-2012-02-28< 10

Animation/td-
<iThe Bhos L Ll
“ze11:40¢/td

2Eo2013-0-10- L

Jifeny. sl
Issort-tablz. 15 </script

OEBPS/Images/p006-001.jpg
THEY $3Y NO TWO
MARSHMALLOWS

ARE THE SAME...

OEBPS/Images/p006-002.jpg

OEBPS/Images/p390-002.jpg

OEBPS/Images/p390-001.jpg
$('#content’).load('jg-ajax3.html #content');
[P N

OEBPS/Images/p262-001.jpg
PROPERTT B

VALENT PURRLEE

taraet sret | enent The target of the event (st specit ce e ert incerzciec with)

e e Tyos of ewnr hat was fred

ncel the cefautt behavicr of anelemer:

cancelable ot supported
METHOD IE5-B EGUIVALENT

PROPERTY
preventhefault() returnialue Cancel derauttbehavicr o tae eveat {f it can be canceled)

stosivasarttinal) cancelOuili Shons the Event Fem BubbAne or SaaerE Ero e

OEBPS/Images/inp308-001.jpg

OEBPS/Images/p062-001.jpg

OEBPS/Images/inp308-002.jpg

OEBPS/Images/p046-001.jpg
& ol
= o ey

OEBPS/Images/p062-002.jpg

OEBPS/Images/inp308-003.jpg

OEBPS/Images/p062-003.jpg

OEBPS/Images/p232-001.jpg
Finds the element node (works with any (Gets the value of the attribute that was
technique covered I this chapter) glven as a parameter of the method
DOMQUERY METHOD

document .getElementById('one').getAttribute('class’):
|

MEMBER OPERATOR

Indicates that the subsequent method will
e tised on the node specifiad o the ekt

OEBPS/Images/p321-001.jpg
RIPT w07/ abirbaten. s

S(runction() ¢
@ $('Tisthrae) removeClass(*hot');
@ $(1i.hot") . addClass (" favorize];
@ $0u')ater(1d, qroup);

i

OEBPS/Images/p135-001.jpg
VASCRIPT =003 neth-abgct. ¢

- Ml

var vando

ool (ah vandon() = 10} + 1

var el = ducunenLgeFlament By T info')3
1. imeriTHL = *<hZ=randon number</h2=<p=" + rancohum + *</p=*:

OEBPS/Images/p321-002.jpg
BUY GROGERIES

OEBPS/Images/p135-002.jpg
random number

OEBPS/Images/p119-001.jpg
room1 items[420, 40,10]
room2 items[460, 20, 20]
room3 items[230, 0,01
room4 items[620, 150, 601

OEBPS/Images/p119-002.jpg
o {accom: 420, food: 40, phone: 10}

1 {accom: 460, food: 20, phone: 20}

2 {accom: 230, food: 0, phone: O}

3} faccom: 620, food: 150, phone: 60}

OEBPS/Images/p591-001.jpg
SATARED

FiREFOX.

cHROME

—_——

OEBPS/Images/p208-001.jpg

OEBPS/Images/p591-002.jpg
kit

OEBPS/Images/p591-003.jpg
Aoril 2015 ~

Sk

Mon Tue wes Thu Fn sar sun

1z 3 o4 s

6 7 8 s 1 u 1

Bow sy B

0 2 2 23 u B
2 2 2 3

OEBPS/Images/p188-001.jpg

OEBPS/Images/p188-003.jpg

OEBPS/Images/p188-002.jpg

OEBPS/Images/p522-001.jpg
$('.menu').accordion(500).fadeln();

@ I6) ®

OEBPS/Images/p560-001.jpg
Greativerollc

My Videos o
= e =

OEBPS/Images/p247-001.jpg

OEBPS/Images/p389-001.jpg
i - m

OEBPS/Images/p279-001.jpg
o is posiLion. s

var oL g LF et By T s} 3 /4 Floment Lo ol sexcenk
var urent cetClementDylo(sy') 7/ Clement to noie screeny
var cunent . gtr] mentlyld('px') 7/ Clenent to n010 pagen
var py = docnenl g F et By (') § 7/ Flamenl Lo hold page¥

var cx = docurent.getClementDyld('cx']
var cy - docurent.gatt |smentsyld('cy’)

7/ Dlement to nola clrentk
7/ tlement to nolg clienty

Function shasfosition(event) { // Dectare function
sxvalie = cuenlsereon; 77 piate clement with sereen
sy.value = eyent. screenY; 77 Upcate element with
pr.valiie - eyant.nageks 77 Uptate stement witn
Py value = event.zaget; 77 Upcate element with pagey
cxvalue - event.clientk; 77 Upcate lement with clventx
Cyoualue - eontcl ety ¢ Ipiate Clemnt with €1 ety

var el = docurent.qatElementByld{'body) /4 Get body element

el addEventListaner(*nousenove’, showPosition, Talse)s // Move updates position

OEBPS/Images/p190-001.jpg
getElementById('one');

OEBPS/Images/p279-002.jpg
sereenk: @ sereen: 0 1 pagex 20 paetEZ) 1 cliont: XN clien

OEBPS/Images/blue-disc.jpg

OEBPS/Images/p007-001.jpg
Rol upt Roll upt s the maker bus...

OEBPS/Images/p007-002.jpg

OEBPS/Images/p609-001.jpg
‘J\flmninn showFrramicssagelel)
0

var 21 = S(eT)s J/ Tind elenent with the error
@ var Yerrortonteinze - Sel.sislings[! errer'); Ji Uses 5t heve errors alrzady
if (!8errorContzinzr. Tenyth) [/10 o e Tound

// Creale a <spae= Lo hold Lhe error and add (L 2fter Lhe elemenl wilh Lie ervor
Serrnetommarnee - S0 <5 class-toreon e/ spans") . nserTATER (i1
|

®) ferrorcontainer. text{s(e1) dara [errarhessage) 74 266 ervor nessage

OEBPS/Images/p120-001.jpg

OEBPS/Images/p432-001.jpg
€09/jqui~form.htm

®{ <label for="amoun
<input type="text" i

®

<body>
<h2-Find Accommodation</h2> ...
<p 1d="price">

“-Price range:</label>

amount” />
</p>

<div id="price-range"></div>

<>

<label for="arrival">Arrival date:</label>
<input type="text" id="arrival" />

submit" value="Find a hotel"/>

<script src=
<script sr
<script sr

</body>

3s/jauery-1.9.1.3s"></script>
js/jquery-ui.js"></script>
js/form-init. js"></script>

OEBPS/Images/p521-001.jpg
CJAVASCRIPT | cAjisfatider s

/i Setup of the script shown on the previous pags

(D function move (newIndes) { // Creates the sl1de frem old te new one
@ var animatelert, slideleft; // Leclare variasles
@ advance()s // ¥hen sTice moves. call advance() again

£/ 1 carrent slide 1s showing or a sTide is znimating, then da nothing
@{ 7% ($group.is{':animated’) || currentindex === newncex] {

raturn;

@{ but Londeray [current Trdex . vomovetTass (CacUive')3 /7 R cliss fron ilon
buttonarray[newIndex] . addC1ass *active)3 /¢ 294 class to naw ften

it (newindex > curventindex) { // Lt new iten > current

Shidelelt - 11005y J7SIL e e sTide Lo the right
animateleft = '-100% 'z // Amimate tne current group to the left
else 71 utherise

slidelert = '-1005'; /7 SIL Lhe new sTide Lo Lhe TefL
animateleft = 1100k ; // Animate the current group to the right

/¢ Tosttion new side o Teft (1f Tess) or riahT (17 more) of current

() Sslides.eq(rewndex).css({1eft: sTiceleft, cisplay: *block’}

@ Syrmommate((1er anmatelert L dwelion() 7/ Aninate st ane

@ §5T1ces.eqicurrentindax) .css{ (d'splay: ‘mene'}); // Kide orevious slice
§sTices.eqineningsx) .css{ {Tefts 0})i // Set position of tne new stem

D foromeni e o) 17 ot ot gt <

@ carrentindex = newlndsx; 7/ set currentIndex to new ‘mage

/¢ Hancling the s/ides shown on pbly

OEBPS/Images/p263-002.jpg
OR,
L_) function checkUsername (e, minLength)
@ var target = e.target; // get target of event

t

var el = document.getElementById('username');

el.addEventListener('blur', functicn(e){ @
checkUsername (e, 5)
}, false); @

|

OEBPS/Images/p432-002.jpg
e ange:

OEBPS/Images/p504-001.jpg
Create HTML for modal Window:
Swindow: the window object

Snodal: modal window oloment
Scantent: modal window content
Suluse: close bution

‘Add Scorsent and §zloze te Smedal

Eventi click on close button
|

ANONYMOUS FUNCTION:
Used to close the modal window

Prevent default action of ink.
|
Callciose() unction

FUNCTION: center () <
Center the moctal window

Got holght of viewport & subtract
helght of madal, halve that figure to get
distance modal shoud be from tap of
‘window, then do same for widths.

i
Sel €58 for modal using these values

FUNCTION: open(set ings)
Show/hide tha modal windew

e S R e
T]
e
Center window ulslnu center(}

FUNCTION: close()

CIose the modal window
Romovs content from medal window
|
Detach mocial and Its event hanclers

OEBPS/Images/p391-001.jpg
SCRIPT 08/ Js/ja-oad. s

S(nav 27)an(* s 150k, function(e) [71 Wser ciees my link
@ e.preventdetanit(); 7/ Stop Toactng rew 1ink
@ var url - this.hrets /1 tet value of hres

([$Cnav a.current!).vemoveCtass (‘curvent') // Clear current indicator
DL 3(i) caddCloss (P cureenl ') 3 New corrent indicator

@ $(#conzainer’) vemove() // Kemove old content
& $(scontent’).Toad(url | ' #centent').hide(}.faden("slaw'); /¢ New content

OEBPS/Images/p447-002.jpg

OEBPS/Images/p391-002.jpg
<& hraf="1g-1oad.ntn" class="curvent">Home
<a rat-"q-10adz .htnl " -Route: />
< a2y Toad3. hinl*>Toys</a

</nav>

<seclivn i=tcontent
<div 1d="contziner>

Vage content I7ves here -

</div>
<sections

<08iq-Toad nte1

OEBPS/Images/p189-002.jpg

OEBPS/Images/p189-001.jpg
11— attribute

OEBPS/Images/p319-002.jpg
Justupdated

OEBPS/Images/p447-001.jpg
Ciavascairt | o3/ gotecnap-styd s

@ var pinlocation = v guogle.naps.|all ng(40.782710, 73.063310)1

(@ var startbosition - new google.maps.Harker([#/ treate a new marker
@ posttion: pirlocation, /i et 1ts posttion
@ venus¥ap, i/ seecity tne map

®

i /g pn* i

OEBPS/Images/p263-001.jpg
2 €
L function checkUsername(s) {
— @ var target = e.target; // get target of event

}

var el = document.getElementById('username');
el.addEventListener('blur', checkUsername, false);
@

OEBPS/Images/p319-001.jpg
(o]

o

1T

S(rum
$(010).
$('11.hot
var gnewl i
§(1205t

=notice s Just updated</p-'):

€07 s adingemn-conLent s

< inemsy il [reesgon oy siunes1i) 3
{$nealistIten

OEBPS/Images/p464-002.jpg
prine
Fle

Zoom (0%

saety

Adasteto stan Sereen

View dowiosds

Manage adé-ons

FI2 devsloper ook

ey

cu)

OEBPS/Images/p189-003.jpg

OEBPS/Images/p464-001.jpg
File Edit L) History Bookmarks

flndow _taig
Ay Show Bogkar Bar 0365

Divisoe ol
Jaser: Console

OEBPS/Images/p575-002.jpg
VAS|

pT 13/ suln fL-vrent. s

@ (tunction()}{

(@ var fom = docunent.getElementByld(Tenin'); /7 Cet forn element

@ adFen (fomm, sabnit, functione) | 47 oo s submis for
@ e.preventberault() 77 Stop 1t baing sent

® var elenents - this.elements; i/ Gst all form elenents
@ var usernams - lonents.usernane. value; 77 Select username entored
@ vermss “ielcone '~ usernane: 4/ Create welcons message
® docamentgeth mentsy a(main'). Les Conond = g3 7/ v welcom e

hs
0

OEBPS/Images/p103-001.jpg
IORILE Y IR EROR IAN.
I L
i 11 1

var hotelName = hotel.name;

var roomsFree = hotel.checkAvailability();
|

Pr—— e

OEBPS/Images/p575-001.jpg
<torn 1d-"lagin* action-"/login" method-"pos
<ty class="two-tnires colum* 1d="main">
<fizidset
<lngeonls! oy e/ egond>
<label for="usernzne®>Usernane:</1abel>
<input tye-tex
<abet

“pd®> Passwords </1abe”>

<input tyge='assword' <d="pud’ name='pud" ;>

<input tyse-'subnit” value-"Login” />

</fieTisels
</div> <1-- .tio-thirds
<t .
<script sre="s/utt11tizs. J3"></seript>

<SCript ST~ js/submit-avent. js o</script>

usernane” nane-"usernane’

<13/submit-evere hte]

OEBPS/Images/p103-002.jpg
var hotelName = hotel|'name'];

OEBPS/Images/p507-001.jpg
PHOTO 1

RHOTOA SHOWING

THUMB
THUMBNAIL 1 HIGHLIGHTED

PHOTO 2
SHOWING

PHOTO 2

THUMBNAIL 2 HIGHLIGHTED

OEBPS/Images/p004-001.jpg
JavaScript allows you

web page
interactive by accessing and
1 g the content and
(CCESS CONTEN markup used in a web page
oS while it is being viewed in
[t the browser.
o Soke, Dota o i1

Clanteanz e
sz et it i e
PRfivEv -
e el whis 4 e
et

v esnues s o e

scge armmaethar Forsarg e
o fecapassphcr ot ve
a e

st
S ot ggernen (55t

onge ez o sestienofan

OEBPS/Images/p276-001.jpg
EVERT THIBEER B

Clice Fires wentheuser cices on the orirmary mousebuller A
{usually hz et button fther is mone thas cne). The cTick tr
eventuwllfire for the elemzns hat the ~aLse is currenty
cuer. tul alse fire if the Lser prasses the Ente- key on the
keynaa-d uhen an ¢ ement has forus.

@Tcick Fires whenthe user clices (e primary mouss bul.on /e

it quice s

Paiisrrown Fires waen the sz clic: down on any o ise butar. e ———
(Canmotbe trigered oy keycaard)

amouse butta-. (Cannatoe You ca Lse the touche-d eve-

mouseup Hires wienthe u

. Uemwdokejtomc) o B

mousuver Fires when e cursa was auis e aneermenland i (en Fires when lhe
v cved iside . (Cannol be Uiggered by ceyauerd) anlemar,

or s moved over

amoves Fires whenthe
dlemnin,

reor s moved offan

Fires wnenthe cursa- 15 over 2= lement, 21
erto another element - cutzide ofthe curren:
whild of . (Carmol be riggered b keyord)

oiserove e anen the ¢.sa- s moved erc.rc aneleent 175 lives whenthe cu
ek et ambdl ol e ifeaared bo Eecbamds

OEBPS/Images/p047-001.jpg
L 4

Constructive & Co.

GOOD AFTERNOON!

OEBPS/Images/p233-001.jpg
wsfjslgetear

var TivstTtem = document.getElenen (ByTd(*one'}; /7 Gel first TisU iten
it (rivstiten.hasAttrbute("class']) | /711 it has class attribute
var atte = firstTlemgethUiribute{'class'}; 7/ Gel the attribute
/180 the vl o7 the allribule afler e Tist

var el = docunent.getllmenchylo('scripshesults') s
el.innerHL - "<peihe Tirst Ttem has a class name: ' + attr + '</p>s

OEBPS/Images/p233-002.jpg
The firstitem has a class name: hot

OEBPS/Images/p175-001.jpg
JAVASCRIPT <04/js/for-100p. js

var scores = [24, 32, 17]; // Array of scores
var arraylength = scores.length;// Items in array
var roundNumber = 0; // Current round

var msg = '3 // Message
var i3 // Counter

// Loop through the items in the array
for (i = 05 1 < arraylength; 1++) {

// Arrays are zero based (so 0 s round 1)
// Add 1 to the current round
roundNumber = (i + 1);

// Write the current round to message
msg += 'Round ' + roundNumber + ': '3
// Get the score from the scores array
msg += scores[i] + '
';

}

document .getElementById('answer") . innerHTML = msg;

OEBPS/Images/p535-001.jpg
AVASCRIPT SL8ge P e faresch e+ c12fse/FiTker- i Ser. s

@ Stunction() ¢
@/ IATA JAOUT PFOPIF GOFS HFRF (st on 167 hind fige)

@ 7/ FLLIERING CODE (see pb3/) GUES HERE — CREAIES A NEW ARRAY CALLEU results

/7 LOOP TIIRQUGII NCH ARRAY &ND DD WATCIIING PLOPLE TO TIC RCSULTS TADLL

@ Vi StalcRary - (' <thody></ hody>!) /¢ e contem JQuery
for (var 1= 3; 1 < results. Tengch; 111) | 7¢ Loco chrousn matches

var person - results[1] 74 Store current person

var $rom = §(<t/ 7 treate o o for tow

Srow.apnenc (§('<td</1d-") text(person.name)): /7 Ade thelr name
Srow.apaenc (§(*<tde</1d="] . text(person.rate))i // 4dc their rate
SLableBody. sppend{ frow); 71 8dd ron Lo rew content

+

77 M hes mew content aller (e hudy of e page
® §('thead’).after(StableBoy}: // Add thedy after thezd

OEBPS/Images/p590-003.jpg
AE kil

FIREFOX

CHROME

OEBPS/Images/p578-002.jpg
Create.

form: <form~ olement

pesswo
Subm'
Subn

4: password Input

: submit button

Zed setto false (form not vet submiktec)
i

© oxabie submit buteon & ser 13¢5 o cisanten

=]

1 submit disaed
® ? orhas form been ?
slbmiteds
]

1t en password input
1

ANONYMOUS FUNCTION:
Chedics I submit should bo oncbled

Event:

Get target alement (password nputy

Set disabled Set disabled
Bropertytofalse property to true

om———

? navea vaie? ?

Setclass Sel tlass
taaisanian toenznen

an <rorie input
1

ANONYMOUS FUNCTION:
Chocks IF form can bo submitted

o

Lt form submit, then: Pravent

~Disabla form form

- Update variable that tracks submitting
IFit has boon submitted T

- Set class to disatled

OEBPS/Images/p590-001.jpg
LTS,

(sheepdog @)

sheepdog)

OEBPS/Images/p578-001.jpg
Reset password

Now password:

OEBPS/Images/p590-002.jpg
SARARD

hello@javascriptbook.com|

FIREFOX
hello@javascriptbook.com

CHROME

hello@javascriptbook.

OEBPS/Images/p620-001.jpg
ELEMENT EVENT METHOD

password focus removeErrorHighlighter ()

password blur setErrorHighlighter()

conf-password focus removeErrorHighlighter ()

con T naxsaord blur: passenrdaleteh()

OEBPS/Images/p620-002.jpg
Create varlablos:
pessword: password Input
pesswordConfirn confirmation input

1

® SventsbTur on paseword
1

FUNCTION: setZrrortighlighter ()
Sots orror highlighting

Get target elsment

Addclassioss Add clase: a1

o FUNCTION: rercveFrranifgnt 1 7atar ()
emcves tror hIghIGAEIG
) et target aloment
Setcizss anbuteto
@ Event: b1~ an passward confrm

FUNCTION: passvordshatc()
Chacks both passwords match

Get target slement

OEBPS/Images/p075-005.jpg

OEBPS/Images/p205-001.jpg
<Ojsnedectist.s

var hellLoms = documen L. yuerySelselorhT](TH oLt

5 /7 Store NodeList in array

it (hotltems. tengih +) { /4 11 it contains itens

or (var =0: i<hotltems.length: i) { // Locp througn each item
ol e [1].c1assitams = ‘conl's /¢ Chinge value of class altribnte

OEBPS/Images/p075-004.jpg
pbuy = 3 > 5;

OEBPS/Images/p075-003.jpg
greeting =

"H1

+ 'Molly';

OEBPS/Images/p160-001.jpg
s e
KEYWORD CONDITION CURLY BRACE

e —
if (score >= 50) {
congratulate();

T
R ——

CLOSING
CURLY BRACE

OEBPS/Images/p205-002.jpg

OEBPS/Images/p563-001.jpg
8

var comoare - {

nane: furction(a, b} |
a = a.replace(/“the /1, ''};

b= boreplaze{/~the /1, ')y
it (a«b) {
raturn <13
}else {
il L0y
b
curation: furc {
a.saloe(
busaloe(

a = fumaer(2[0]) * 50 ~ Number(a[1]

b - fumser(a[0]) * 00 = Number(b[1]);

return z -
1.
cate: furction{a. b} {
a - new bata(a);
b = new Datz(b)s

}

s fsore-tame. s

/4 Declzre conpare object
// Add = methoo catled nane

// Renove Tre fron start o parameter
77 Rewoe T Tron <Lart o7 parameler

J/ 17 value a s less than value b

77 Retuen -1

77 otherwise

F7 0 i greater han b velwn 108
J70T Ty dre the sane relien 0

// Add 5 method called duration
7/ Sp1t the Time at the colon
¢ Sp1it the Time at the colon

Conyert the tire to secands
7/ Gomyert. the tire to secands

/{ Return a minus b

// Add = methoo called date
77 Tew bate object to hold tre cate
// Mew Dale object Lo hold Lhe date

¢ Retuen i wins

OEBPS/Images/p520-001.jpg
0606 0 ¢

FUNCTION: move(irdex)
Slices to the Image sperifiad

Create variables:
52 animato from loft/right
ositlon new siide to left/fght

¥
calladvence) function
Y
s slidarmoving
ORI now mage
it mages
——
Updata buttons ta show which I activa
3
Is Index numbor
ofnew mages
Currant image?
Set varlable:
S1ieloft: position
new silde o tert
i
Sot variablo
animtensrt
anmate cument animats current
lice torlght e to et

T e

Updats CS5 of new slide to position It
o rignt or left of current siide
[
Animate currant slid tc positian sat in
variable above (This reveals new siide)
i
Hida siide that just movad out of view
i
Pasition new item (a7t property set ta 0)
!
Reposition allitems (1er. property set to.0)
[

Set $currentIndex to index no. of newslide

OEBPS/Images/p407-001.jpg
@ ee oo

—r

1P T

// CLICK 0N & SESSI0K 10 LOAD. 1HE DESCKLPILON
S conLent’)on('click, Asessions 1i ', funclivnfe)
e.preventhefault(};
var Tragmnl = U 5.

ety

sramert - fraguent.replace(*4',
SC el 3175°) Yo { Fragaent) 5

S(*ésessions a.current) .removetlass (' current
S(Uis) cadiBlass * corrent)
s

// €1 1CK 0N PRIMIRY KAVTGATION
$('mav a').on(‘click', function(e) {
e.preventiefaul ()
var url = tnis.nre’s

rrsmoutClass [current.) g

s(*scontatre

v
Vi
1

Vi
1

i

i
3
13

i

confis/ecsepie. s

Click un session
Prevent loading
1L i5 in heer

Add space afters
To Toa infa

Update selectes

Click on nav
Pracent laading
Get URL o Toac

UpdiLe nay

Remove ald

5(*scontent) Taad(url + ' #container).ide(). Tadeln('slow'): // 4dd new

s

OEBPS/Images/p031-001.jpg
Yi

OEBPS/Images/p074-001.jpg

OEBPS/Images/p260-002.jpg
EVENT CAPTURING

OEBPS/Images/p260-001.jpg
EVENT BUBBLING

OEBPS/Images/p074-002.jpg

OEBPS/Images/p175-002.jpg
Round 1: 24
Round 2: 32
Round 3:17

OEBPS/Images/p104-002.jpg

OEBPS/Images/p435-002.jpg
RESULT |
2\

THE MAKER BUS

e g o
To:
Sophie

Message:

AL ABOARD

Lets go make some
robot.

OEBPS/Images/p104-001.jpg
JAVASCRIPT

c3/js/object-Titeral . js

var hotel = {
name: 'Quay’,
rooms: 40,
booked: 25,
checkAvailability: function() {
return this.rooms - this.booked;

s
var elName = document.getElementById(*hotelName');
elName. textContent = hotel.name;

= document..getElementById(* rooms');

var elRooms =
elRooms. textContent = hotel .checkAvailability();

OEBPS/Images/p435-001.jpg
HTM| c09/angular-introduction.html

<IDOCTYPE htm1>
<html ng-app>
<head> ...
<script src="https://ajax.googleapis.com/ajax/
11bs/angularjs/1.0.2/angular.min. js"></script>
</head>
<body> ...
<form>
Tos

<input ng-model="name" type="text"/>

‘message"></textarea>
value="send message" />

<div class="postcard">
<div>{{ name }}</div>
<p>{{ message }}</p>
</div> ...
</body>
</html>

OEBPS/Images/p608-001.jpg
(1) function serFrraressage(el, measage]
B) $ie1).cotal erraressage’, message] s 4/ Store error nessenz with elenent

OEBPS/Images/p478-002.jpg

OEBPS/Images/p478-001.jpg
] breakpolnis s x
2 storm = sCscatestatar i
& stescniatator onl s, fuctionte)
consote-togr ciffked St 17}

Line 9, Column 1

OEBPS/Images/p147-001.jpg

OEBPS/Images/p461-003.jpg
NOT A NUMBER
var total = 3 *

OEBPS/Images/p461-002.jpg
CANNOT CREATE ARRAY WITH -TITEMS
var anArray = new Array ([EI):

RangeError: Array size is not a small
enough positive integer

NUMBER OF DIGITS AFTER DECIMAL IN
toFixed() CAN ONLY BE 0-20
var price =

price. toFixed (EY

RangeError: toFixed() argument must be
between 0 and 20

NUMBER OF DIGITS IN toPrecision() CAN
ONLY BE 1-21
num = 2.3456;

num. toPrecision(EZ]

RangeError: toPrecision() argument must
be between 1 and 21

OEBPS/Images/p206-001.jpg
Jeriies bS8l tlens. Jengbis s

hotTtcasTi] classtanc - *cool s

bocx o0 | Bicn diellbien il s

BuY aroccRIEs

OEBPS/Images/p348-001.jpg
—OD— .width()

~innerHidth()

3 -outerHidth()

» .outeridth(true)

PADDING @ BORDER = MARGIN

OEBPS/Images/p534-002.jpg
NAME HOURLY RATE (8
Gamille &0

Gordon ”

OEBPS/Images/p534-001.jpg
LOOP THROUGH EACH PERSON

? Is rate <= 907 ?

Add person to results array

OEBPS/Images/p362-001.jpg

OEBPS/Images/p577-002.jpg
@ (tunction()}{

var

addtvent (chk, ‘chnge’, “unction(e)

pid = document.getClenentlyld('pud'}s // Get passuord input
CI = o e geLE | By 10 shawPaad) 5 7/ 6L eccKion

74 Wihen user clicks on checkbox

var Largel - e.Lingel || cosecFlemenls 7/ el (ol eleenl
ry { 7/ Try the Tollowing code block
it {target chackea) | 7/ 11 the checkbox 1s checked
phc.type = "text's 77 Set pud Tyne 1o text
) elsa { 77 Otnerwise
it Lyp: = *pasaord® £/ S0l Ly 1o passaord
}
caten(error) { 77 1 this causes an error

alert('This browser camnot switch type'}; /7 Say |

ot switch typ:

OEBPS/Images/p577-001.jpg
i Ainpus-tyze

<fizldsets
<legerndsLoy i</ eend>
userrane>Usernane

/1abel>

Loxl® Gt usernan® e "usernan
<Tabel for="pwd®>Nassword: </1abel>
“input Tyse-'sassword” Td-"pud’ name-"fud" />

“cher kbox | d="shuaPud >
SnoWd">Show passuord«/TabeT>
submit® value="Legin® />

</Tielini>
<script sresvis/uttitizs. fste/seript>
«script sro-"js/input-type.js*a</script=

OEBPS/Images/p234-001.jpg
sfssatoatiri

o JAVASCRIPT

var FirsUTLom = documenl .gel Flena By Td{"oie')3 7/ el the First il
firstiten.clzssine = 'complete : 77 thange 1ts class ar:

fbute

Gar Tourth om = documen ge! onentsby aghane (1) Ln(3)1// el Tourth iLon
sNz.zetateriute(‘cless ', cool)3 7/ g an sterioute to 1t

OEBPS/Images/p277-001.jpg
w/js/etick.ds

£/ Treale Tie KM for Lhe message

var msg = 'ed®y class=\"heaterl'><a fd=\'cToss\" nref="#"sclos
s =~ "<dive<hZ>Systen Naintenances /hz"

msg " servers are heing updated betweer 3 and 1 a.m.
msq = ‘During this tinz, Tnere may be minor disruptians to service.</div';

Xefave/div's

var clNate = docunenl.craloF ol (v)5 /7 Create o new lemen
elNste. sezaterioute(*te’, ‘note'): 77 8dd zn 14 of note
elNote. innerfl ML ~ msg; 7/ 84d the message
duen Loy anen dCh T 14l o) 77 T Lo e pag
“unction disw sshota() { /1 Ueciare function

Gocumenz. 5oy . vemoveCiTd(e Hote] /1 femove tne note

var eltlose = cacument etElenentBy[d{ close'}; the close button
eltlose.adgtventLsstener('click’, dismissliote, false)s// Click close-clear note

OEBPS/Images/p277-002.jpg

OEBPS/Images/p234-002.jpg
balsamic vinegar

OEBPS/Images/p161-001.jpg
JAVASCRIPT <08/js/if-statement . js

var score = 75; // Score
var msg; /] Message

if (score >= 50) { // If score is 50 or higher
msg = 'Congratulations!';
msg += ' Proceed to the next round.';

var el = document.getElementByld(*answer');
el.textContent = msg;

OEBPS/Images/p161-002.jpg
Congratulations!
Proceed to the next
round.

OEBPS/Images/p161-003.jpg
JAVASCRIPT <08/js/if-statement-witn-function. js

var score = 75; // Score
varmsg = ' 7/ Message

function congratulate() {
msg += 'Congratulations! ';
0]
€]

}
if (score >= 50) { // If score is 50 or more
congratulate();
msg += 'Proceed to the next round.';
}
var el = document.getElementByld(*answer');
el.innerHTHL = msg;

OEBPS/Images/p333-001.jpg
RIPT i isfarrses s

S{function()
@ $(nz').hide().slidebom():
var §1i - ${"1i).

§11.hide()..each{functon{index) |
s(tis) . delzy,
13

00 * index) . fadeln (700)
$11.on{'cHex'. function() {
B S(tnis).tacsbut (00):
bE
1o

OEBPS/Images/p506-001.jpg
THE FLOWER SERIES

(43_»_1)

RosE PETAL.

OEBPS/Images/p249-001.jpg
Event: blur on username
1

FUNCTION: checkUsername ()
Check the username Is long enough

Get username.

i i

Clearmessage Show error message.

OEBPS/Images/p376-001.jpg
"location": "San Francisco, CA",
"capacity": 270,
"booking": true

{indouble qiotes

OEBPS/Images/p549-001.jpg
<12/ e certags s
@ (tunction() {

// Create variables {see p547)
7 Eraate tagged object (saa Eb17)

@ $(*<buttonj>'. | // treate empty button
@ text: *Shaw AllY, 77 Ada text 'snow a1l
@ class: ‘active’, 7 Make 1t active
® click: function() { 7 Add onclick hancler to it
$(this) /7 et the clicked on button
O s e
®[“siateras() 77 Get its siblings
\removeGlass (‘active'); 7/ Remove zctive Trom then
® $imgs . shew(77 Show all mages
® }).apoencio{$outtons); /{ hdd to buttons
@ $.eacn(zagges, function(tagame}! // Tor sach tag name
@ S(<bultonat, | 77 treate caply button
@ ‘text: taq¥ame | ' (' 1 tagred[tagName].lenqth 1 '), // Ad¢ taq name
® clicks function() { /¢ 4 click handier
®{ ${1nis) 77 The button cicked on
.2ddCTass ("active’) 77 Nake clicked 1tem active
“siblings () 7/ et its siblings
®{ $imgs /7 With all of the images
onide() 7/ Hide them
@ -fiTter{tzaged tantame]} 77 Find ones with this tag
® ~show(): 7/ Show just tnose images.
® ZppendTo($buttons); // 4dd to the buttons

ms

OEBPS/Images/p461-001.jpg
INCORRECT CASE FOR document OBJECT
[locument .write(*0ops!

TypeError: 'undefined' is not a function
(evaluating ‘Document.write('Oops!')")

INCORRECT CASE FOR write() METHOD
document . [rite(*0opst*):
TypeError: 'undefined' is not a function
(evaluating *document.Write('Oops!')")
METHOD DOES NOT EXIST
// Create empty object
// Try to access getArea()

var box = {}

TypeError: 'undefined' is not a function
(evaluating 'box.getArea()*)

DOM NODE DOES NOT EXIST
var el = document..getElenentById [EH

el.innerHTML = 'Mango':

TypeError: ‘null' is not an object
(evaluating 'el.innerHTHL = 'Mango’

OEBPS/Images/p333-002.jpg
freshfigs

pine nuts

OEBPS/Images/p377-002.jpg
{ *ocations "San Trancisco, CA, “date’: "May 1", “rep*: “ing/nep-ca.png").
{ *Tocation: *Austin, TX*, "date": “ay *map"; “img/map-cx.png" }.
{ *Tocation™: *Nem York, NI™. *date’: "May 30", "map*: *img/map-ny.pag" |

OEBPS/Images/p377-001.jpg
events": [

"location": "San Francisco,
"date": "May 1",
"map”: *img/map-ca.png"

"location": "Austin, TX",
15

“datens "May
"map /map—tx.png"

b
"location”: "New York, NY",

"date": "May 30,
+ "img/map-ny.png"

® OBJECT @ ARRAY

CA",

OEBPS/Images/p406-001.jpg
08/ s fsnam1a. s

®

o
©}

@

®
o)
@
®

// CLICK ON THE EVENT T0 L0AD A TIMETABLE
S{*feontent’).on{'cick’, ovent ', function(a] | // User clicks an place

srevent B ()3 4/ Prevent Toding page
var Toc = this. 1g. colppercase() // Gt value of id attr

var newlontent - // 19 build up timetable

for (var 1 = 0: 1 < times[loc].Tenqths 111} { / 100p through sesstons
newtontent + <l T-span ciss “rines + tines[Inc][1].tm + </span='s
neaCuntent "<a href="descriplions.himl#';
newGontent +- tmes[loc] [1].tit e replacs,
newContent

1

B sess lons') bt (<l

/9 "
mes[loc] [titTe 1 '</a</1>1:

< newlonLend + '<pa>0y /) Display ine

$(sevenl s curvent?) . renoveClass {current?] 7/ Update selected ik
${zh1s) addClass(* current”);

0 details) text (1) /4 Blear third colim

OEBPS/Images/p033-001.jpg

OEBPS/Images/p075-002.jpg

OEBPS/Images/p075-001.jpg

OEBPS/Images/p261-002.jpg
Javascript
o y fresh figs.

Javascript
o+) <2 - frash g >
O Javaseript
<liid="ram> <a =Tk fesh fgec</a <>

ook

OEBPS/Images/p105-001.jpg
JAVASCRIPT <03/js/object-1iteral2.js

var hotel = {
name: 'Park’,
rooms: 120,
booked: 77,
checkAvailability: function() {
return this.rooms - this.booked;

b
var elName = document.getElementById(*hotelName');
elName. textContent = hotel.name;

var elRooms = document.getElementById('rooms');

elRooms.textContent = hotel.checkAvailability();

OEBPS/Images/p261-001.jpg
LISTKING

BUBBLE

OEBPS/Images/p105-002.jpg

OEBPS/Images/p148-001.jpg
Is test score
greater than
50?

Message: Try again... Message: You passed!

OEBPS/Images/p334-002.jpg
bottom left risht top backgroundfesizionX ackgroundtosition Feight width
maxlleisht minlleight maufistn mMistn margin mangn0stton marrinieft | marginRight
maryinToy oulTinenidth peddivg paddingBulion poddinglet paddingRight paddingTup
Fontsize | letterSpacing worsSsacing | linelleight | textIndent borderRadiss | borderdiath
bordersolicaNidih LurderLefUAidth borderRightMidis LurderTopi

g o e

OEBPS/Images/p334-001.jpg
.animate({
// Styles you want to change
}, speed][, easing] [, complete]);
[EE—') ST) W S) S

OEBPS/Images/p005-001.jpg
Javascript
encompasses many
of the traditional rules of
programming.

It can make the web page feel
interactive by responding
towhat the user does

enpe teaudbe

o Aot e

OEBPS/Images/p048-002.jpg
Ji st

Clle i Jlen Histor Moskhadd S h e

ElElEl

Window _Help

4

Conﬂrudlve & Co.

OEBPS/Images/p060-001.jpg
var quantity;

IABLE KEYWORD

OEBPS/Images/p048-001.jpg
B safarl File Edit View History Bookmarks

000 Consina
1) (2] (0] (8] (3] (6 @ cmemrun

4

Constructive & Co.

WELCOME!

For a1l orders and inguir

L
e Page with
Uier Agen: ;
ShowWeb spector Y1 |
Show o Cansae i i)
o Pge Source
Show Fage Resources
Show rippetElor
o Extenion Sulcer

Star Profiing Jmvascrint
STt ecdng YoNT |

Empty Caches ~ne
Disale Caches

Dl e et ks
Enable ebGL.

OEBPS/Images/p477-001.jpg

OEBPS/Images/p607-002.jpg
function {sEmotyiel) {
veturn lelovalue || el.aus

'

elplacholder

OEBPS/Images/p306-004.jpg

OEBPS/Images/p434-001.jpg
VIEW MODEL

OEBPS/Images/p607-001.jpg
function 1sRequives(el) (
returr ({tyoeol

= tbuTean’) 8 <1 required) |
sUring')y

OEBPS/Images/p133-002.jpg
original number
56

J 5
» 3 decimal places

OEBPS/Images/p176-001.jpg
c04/js/while-Toop. js JAVASCRIPT
vari = 1 // Set counter to 1
varmsg = *'; // Message

// Store 5 times table in a variable

while (i < 10) {
msg =i+ ' x5="'+ (i*5) +

i

}

document .getElementById('answer*) . innerHTML = msg;

OEBPS/Images/p306-002.jpg

OEBPS/Images/p349-001.jpg
Ciavascuiet | w0 v o 5

s(fanctton() ¢
uar Tistlizight = §("#oage’) height();

£ SHeighis s TistHeighl + pasy
$('11") wideh('505')
S0 Hisone ') width (1

B Tigtne!) widU (!

OEBPS/Images/p176-002.jpg
1x5=5

2x5=10
3x5=15
4x5=20
5x5=25
6x5=30
7x5=35
8x5=40
9x5=45

OEBPS/Images/p306-003.jpg

OEBPS/Images/p349-002.jpg
freshfigs
pine nuts

honey

balsamic vinegar

Height: 432px

OEBPS/Images/p133-001.jpg
iavascuier | 03/ bt -abject. s

Aty = 10,2347

var origi

Var msg - "<hZ-original numoer/iZscps’ + originaliumzer + </p>"
(@ msy = <h2>toFtxec()</n2><z’ 1 oriqinaliurber toFtxed(2); 1 '</5>!
@ nsg - "ehotabrecision()</nz=<p=' + originaltumber, toPrecision(3) +

var &1 = docurent LBl mentBy1o(info')5

el imneriTHL = msg:

OEBPS/Images/p306-001.jpg

OEBPS/Images/p562-001.jpg
Create object: conpare

(o]

DECLARE METHOD: name a, b)

Replace any instances of the word the at
the start of the parameter with a blank
string using a regular expression

¥
? ?
? ?
v

® 000

DECLARE METHOD: duration(a, b)
Convert both parameters Into arrays
1
Convert both parameters to seconds
1

Returna - b

¥

® e

DECLARE METHOD: date(a, b)
Convert both parameters to Date objects

Returna - b

OEBPS/Images/p258-001.jpg
It the browszr supporss
addFuenl 15 ener()

2unth code side.
these curly

It doesit, de
somelhing ehe

Runthe code 1side.
these curly hraces

if (el.addEventListener) {

e].addeventListener(blur', function()
checkUsername (5) 3
}. false)3
} else {
el .attachEvent(‘onblur®, function() {
checkUsername (5) 5

Hs

OEBPS/Images/p444-001.jpg
VISIEILITY OF MAF CONTROLS POSITION OF MAP CONTROLS

OEBPS/Images/p444-003.jpg
COMTEDE L HERAULT

zomtentral (1) Sets the zoom levzlof the maa [-Lses as der fforlage O
maps) *1/< butions (o small maos)

Allows paring acoss the map Onfor non-tovchdesices

Showsthe scale of the map

Switc

A Peran i bie. an be drag e and dropped o
map to o a st

Athumbnal showirga erger aree, that reflects whers Onwrenmapis

overyiewtiapLontrol

clirvait D i within thet wider aren (e showry. ol

RS

OEBPS/Images/p355-001.jpg
<SCript sre-"//a7ax.gocgleants . con/ajax/ | ibs/jquery/ L 10,2/ ouery min,is*>
<fseripts

sripts
window. Query || docunent.urtte('<sceipt sre="fs/1query-1.10.2.1s"<\/script>")
</seripts

OEBPS/Images/p436-002.jpg
<09/ e —contriT e s JAVASCRI

function BasketCrel (dscope)
Sscopedescripion = *Sing e Lickel';
$scope.cost = €
Sscope.qly -

OEBPS/Images/p339-002.jpg
Priority Item: pine nuts

OEBPS/Images/p339-001.jpg
1T s s

var STistTioms = $("17"
(O Slistitens. fiTter(" hot:ast') renoveCTass ('hot'):
@ S(Hsmot(innt) ") .adHC s (" conl)5
@) STtstians.nas(*en') acdCTass{ ' complete’);

Stistitans.aach(functien() {
var fthis = §(this);
if (Sthis.is(*.hot'))
SUb s prepond (*Prlerily it ')

'
i

ns("horay"]*).append(' (local})3

OEBPS/Images/p525-001.jpg
iny T s faczardion-plugin.is
@ (tunction($){ // Use § as variable name
() §.naccordion = function(speed] | /i Return Uhe jQuery selection
& his.on('click', '.accortion-control*. fusction(e){
preventin i1 ()3
${ants)
next (" .accordion-pane1’)
oL o Led)
_sideTogaie(spsed):
)
velur i J1 Return U JQuery s

)
® 1) (iery)s /{ Fass in jluery object

OEBPS/Images/p525-002.jpg
“HTmL | ettjaccardion-glusin hte)

<ul class-"meny">

aix
<hi>Classics</hiz</:
=div s andion panel STT you 1ike your Mavors Lradi

<11

s

<h2>The Flower Serfese/nis
<div clzss="accordion-panel ‘Take your Tastebuds for a gentle...</div

<a fref-"#* Class~accord!on-control “=<ns-Salt o* the Seac/hi-</a-
<a1v clz55="accordion-pznel ">Ahey! If vau Tang for a taste of...</3iv

<ful»
<SS ey st s inls
<SCPBt STC="j5/Jquery. 2ccordion. Js"</scripts
~script

§('.menu*) .accoreton{500);
</scripts

OEBPS/Images/p274-001.jpg
IRIBEER

st e e Tt b Bt pet i

abous bl ol suoprtedin

£ fres for thz: DO node.

<ollime o i

b L i bl i

Capture

B & caplurs

it & vt

OEBPS/Images/p460-002.jpg
VARIABLE IS UNDECLARED

var width = 12;

var area = width * (ISP
ReferenceError: Can't find variable:
height

NAMED FUNCTION IS UNDEFINED
T MR R randomFunction ())Y

ReferenceError: Can't find variable:
randomFunction

OEBPS/Images/p460-001.jpg
MISMATCHING OR UNCLOSED QUOTES
document .wr te ("Howdy[ll) :

SyntaxError: Unexpected EOF

MISSING CLOSING BRACKET
document .getETementById (" page’ |

SyntaxError: Expected token

MISSING COMMA IN ARRAY

Would be same for missing] at the end

var list = ['Item 1, 'Ttem 2'|'Item 3'1:
SyntaxError: Expected token '1*

MALFORMED PROPERTY NAME
It has a space but is not surrounded by quote marks
user = {first]name: “Ben”, TastName: "Lee"}:

SyntaxError: Expected an identifier but
found ‘name’ instead

OEBPS/Images/p436-001.jpg
cosjsrginar corcroniar.nean

<IDOCTYPE hemi>
<ntml ng anp
<hzad>
Menlavairiptifiomys: juery. Ciapter0.::
<SCript sro="nttas://ajax.g00g]eapis.con/ .

ipt

<seriplL srest s angular-conLraller. js%</s
<lirk ra|-"sty|eshest” href-"css/cls.cos™

</neac>

bty

<tatle ng-contreler="TaskiCir]
et Tmee < | doscrint i | </1/1
<tretdCostis/tesS({ cost |ie/toestr
<<l QUyz </ Uil 1uL Uype="umber® -] ="cLy o</ Lo/ Lr>
“troctdSubtotal i</zo<td-{{qty * cost | currency)l</td>s/tr

</table> ..
</ondy
</

OEBPS/Images/p185-001.jpg

OEBPS/Images/p347-001.jpg
T RIPT 71 tpy-pase.s

st]
@ var go = 300

var $clonedQuote - Sp.clone(
D fu.romve();
@ $clonzaquote. tnserthtten(*h2');
G v SmoveTlem = §('fore’) deLach()y
(@ imoveltem.appendTa('y

)

OEBPS/Images/p347-002.jpg
LISTKING

BUY GROGERIES

“Opportunity is missed by most peaple because
itis dressed in overalls and looks like work.”
-Thomas Edison

pine nuts

honey

balsamic vinegar

OEBPS/Images/p193-001.jpg
getElementByld('one')

OEBPS/Images/p096-002.jpg
var area = function(width, height) (
return width * heights
b

var size = area(3, 4);

OEBPS/Images/p096-001.jpg
function area(width, height) {
return width * height;
b

var size = area(3, 4);

OEBPS/Images/p282-001.jpg
.

LISTKING
MEMBERSHIP

Selecta package:
@ Wise choice!

@ Checktoagree toterms & conditions
A\ Youmustagree tothe terms.

OEBPS/Images/p193-005.jpg
P

OEBPS/Images/p193-004.jpg
D S S S

getElementsByTagName('1i')

OEBPS/Images/p606-001.jpg
functiv: val idaleeasived(el) {
@ 17 (Heutred(en) [
@ var walid = bistmpy(el)s
D it (reta) |
setorromflesszzelel, 'Hisld is requirss

1

T
) i
ok

/¢ Ts this cloment vequired
/¢ Ts valuz not empty (true/Taise)
/7 Lt valic variable rolds Talse
/¢ Set the ervor messe

/¢ Retum valtd vartanle (crue/false)

/1 17 not reauired, =11 is okay

OEBPS/Images/p193-003.jpg
_

1T 1T 1

getElementsByClassName('hot ')

OEBPS/Images/p193-002.jpg
T g

OEBPS/Images/p614-002.jpg
Call function,
does It return
true?
Call function: call function:

showrrordessage() removeErrorilessage()
& set corresponding

OEBPS/Images/p614-001.jpg
M1f {tvaltdareRia()) (7/ €a11 walidatcRin()
ShouF erorHessage (foeuent getFlorentRyla('hia)]s /] Show crron nescagn
vatid.zie - Fals 71 Updatz vatid obi

Jerse { 71 Othervise. vero

@) removezrrorMessziz(document . qettlementsylc(bio’))s

}

1% not valtd

- not valig
rror messane

OEBPS/Images/p290-001.jpg
s flsisamte. b
war sernane, nolelams, Lex| Futered, Langets 77 DecTare variables

noteNane = cocurent.getClenentByLe(noteame’

// Ciement that holds note

function uriteLase’ (6) | 4/ Declare function
it () § 77 It evert ooject not preser
= windon.cornl g 73 st 15 8l bick
)
Zarget - event.target || event.srchlanent; // et target at svent
extEntered = 2. tarmet.value; 77 Value of trat slenent
noteNme. textContent = texiintersds 77 Update note text

1

4/ Inis is wnere the record / pause controls and functions 9o...
j S2e vight hand page

i (ocument addFeentl (s tomer) | £ TE tvont. Tisten sppar
docurent .addEventListensn(*c1ick’, function(){// For any ciick gocurent
recordertontrals(e): 7 Gall recorcerControls()
I, Falsels 74 Capture during hublile phise

/7 17 input event fires on usernane input call writeLabel ()
Usarnane. addbventl stansn{"input ", wrs<el abel, 121se);

}else [// Otherwise
decurent.attacrvent ‘onclick , function(e}(7/ IC falloacks ary click
st 77 Calls rocariertant s ()
s

7/ 11 keyup event fives on usernane input call writelabel()
ername. oL Lacbvenl {‘akeyup , wrilelabe), Tals) s

+

OEBPS/Images/green-fill.jpg

OEBPS/Images/p499-003.jpg
Savascuier | e s

@ s(*.tab-1ist").zach(function(} | // Ting Tists of tabs
v Sthis - §(Lhis) 77 Stare (his Tist
@ var §tab = fthis.find('11.active'): // Get the active Tist ftem
var $link - Stab.find(‘a’) J{ Get link from active tab
var fuanel = §($1 ink.attr{'hrer}}; 1} Gel
@ Snison(eck, b contrat, fnet ion(e] /7 When c1ick on G
@ e.preventletault(}; 7 Trevent 1nk behavior
© var Slink - ${tnis]s 77 stare the current 110k
® vl - thisha 77 B href of clicast L
@ it (1d 8k 1k s(Cactiver)] | /7 1% nat currently active
foanel.removeClass(active'}; 7/ Make panel tnactive
§tab, removeClass‘active’)i 7/ Make tab inactive
®{ Suanel = §(10) . addtass{active!)5 17 Wake mew panel active
§tab = §1ink.parent().addClass ("active’): // Make new tat sctive

OEBPS/Images/p460-003.jpg
CHARACTERS ARE NOT ESCAPED
decodeURT (*http: //bbc. com/news .php[Ela=1'):

URIError: URI error

OEBPS/Images/p499-001.jpg
ciftase nte

<l chass "tah 15t
<11 class="active'>Descriptions/a></1%>

“liaca Class-" tab-Contro|" href-"¢tab-z">Lngresientse/as</11>
<Uf<z class="tab-control" href=*#tab-2*>Del tverye/a>e/ 11>

<1
<div cLoss=t Ll paned acLive® (d="Lah 1*>Content 1.
<div class='tab-parel® id="tab-z'>Content 2.

iv class “tab parcl® 14 "tab §~Cantent 3.

OEBPS/Images/p499-002.jpg
= etttk

Tab-panel {
cAsplay:
ab-panel .
aisplays olocki}

OEBPS/Images/p130-001.jpg
CO3/js/s rrg-object. s

@ var saging - Fow saccl howe |

@ var 735 = <h>lengthenzoas’ 1 saying.lengtn 1 e/pt
isg - *=hi-upparcases/nZ=3+' + saying,tolpparCaze() + '/p=
wy - 'St i + sayimg:Lolimertass()

mse += *<hz=character index: L2</hZo<p=' - saying.chardz(12) + '</p

msg += '<hz>first ee</h2><p>' - saying.indexOf('es') +

sy == <> asl o</h + saying. lasl Indes0] (o) + '

Tsh 1= "<hz>character fndex: 8-14</Ma><p>! 1 saying.Substring(3, 18) 1 ';
msg + replaces/hz-<p=' = saying.replace(me', W'} + '</p>'s

var el = docunent .gtE] smentey
el innertIL - ms

('1nfo

OEBPS/Images/p130-002.jpg

OEBPS/Images/p266-001.jpg
LSTKING

BUY GROCERIES

OEBPS/Images/p211-003.jpg
@ riRsTcHiD
LAST CHILD

OEBPS/Images/p211-001.jpg
sfninag e

ane” class="not’

"tag" Class="not*>pine nuts</11

SelT T T Lass=hot " >huney=/ |
<11 10="four'sbalsanic vinegar</11

s ful>

erfresh/en> flas=/11

OEBPS/Images/p211-002.jpg
JAVASCRIPT w8/jeni s

// Select tne starting point and find i%s children
Var startItan = document.getE] ementseyaqMare(ul')
var firstitem = startitem.Tirsithi1o;

var TastTiom = sLartTLen.Tas1ChiTd;

7/ thange tha values o the chilren's class attributas
Firstitan.sstAttribute{'class’, ‘complete’]

T
TastItem, setdttribute(class’, ‘cool'};

OEBPS/Images/p034-001.jpg

OEBPS/Images/p123-002.jpg
FOR WORKING WITH STRING
STRING [P
FOR WORKING WITH NUMERIC
MBER [RPiS
ITIEII CoR WORKING WITH BoOLEAN

OEBPS/Images/p123-001.jpg
document

<html>

<head>

<body>

<title> attribute

OEBPS/Images/purple-disc.jpg

OEBPS/Images/p106-001.jpg
var hotel = new Object(); G By

otel .name

e et e @ vae

T

PROPERTIES

< ¥
return this.rooms - this.booked; NMETHOD

OEBPS/Images/p123-003.jpg
TO REPRESENT AND HANDLE
DATES

FOR WORKING WITH NUMBERS
AND CALCULATIONS

FOR MATCHING PATTERNS
WITHIN STRINGS OF TEXT

OEBPS/Images/p115-001.jpg
width: 600,
height mo,<—l
getArea: function() {

return this.width * this.height;

}

OEBPS/Images/p115-002.jpg
000z
{width: 300}

var shape

var showhidth = function() {
document.write(this.width)

shape.getWidth = showHidth;
shape.getWidth()

OEBPS/Images/p587-001.jpg
e fjs/zeputatesselecthon js

@ (tunction()}{

@ 4T e st el FlmentBy oo e Ty)3/ T seltel lox
var mogel = cocument .cetC] enentBy[d({ wodel ') 47 Noce1 select box
T var cameras - | /1 Ubject stores cameras

bolex: ‘Bolex Pxfilard Ha
vasnica: Yzshica 30'.
escopes Pathescape Super & e
caron: *Canan 512"
5 b
O ar projectors - { /¢ store prajectars
kecak: 'Kocsk Instamatic MSs',
bolex: 'Dolex Saund 715
Hirk ',

// WIDN TIC USER CIIAKGCS TIC TYPC SCLLCT BOK

@ addtvens(type, ‘cnange’, function()
& AT (this.value === "choose'} | £/ No selection mad
© madel inrerllTHL = '<ontion-Plesse choose a type first</aptions
@ raturn 11 N vt L procerd further
© var mocels - getosls(ois value) s /1 Select the right object
/¢ LOOP THROUGII THE OPTIONS TN THE GBIECT T0 CREATE 0PTIONS
@ var options - "~option=*lease choose a model-/option="
@ Ter (var key ‘o wodels) | 7/ Loop Unrough models
® caticns += '<aption vilues"! + key + "' + nocels[key] + *</option
47 1% an option could contarn 4 quote, key shauld ke cscaped
@ mocsl.InnerdTH. = cations; 1/ Update select box
ns
function gethadel s {equtpnzntType) |
@ 1t (eauiprentiyoe -—- caneras’) { [/ 1F tupe is cameras
@ vaturn cameras: 7 eturn cameras ohject
@) lse T (ewulsmentiype = projectors’) [/7 11 type 1s projectors

ectors; {7 Return projectors object

0)s

OEBPS/Images/p177-002.jpg
1x5=5

OEBPS/Images/p177-003.jpg
1.2 3 4 5 6

msgi+=iii+i' x 5= '+ (i * 5)i+i'<hr />"

OEBPS/Images/p177-001.jpg
JAVASCRIPT <08/js/do-wnile-100p. js

var i =13 // Set counter to 1
varmsg = *'; // Message

// Store 5 times table in a variable

do {
msg 4= i+ ' x5 ="'+ (i *5) + '
's
i

} while (i < 1);

// Note how this is already 1 and it still runs

document .getElementById('answer'). innerHTML = msg;

OEBPS/Images/p452-001.jpg
function greetUser() {
return ‘Hello ' + getName()s

}

function getName() {
var name = 'Molly';
return name;

}

@ var greeting = greetUser();
O alert(greeting);

OEBPS/Images/p419-001.jpg
var elHap = docamenLget FlamntByTd(*Toc') 5
var msg = 'Sorry. wa wer wiable to get your location.'s

@ 1t (ororizr.gonincation) |
(D ravigztor.qeolocation.qetCurrentPosition(success, fa1l);
e1Map. textContent - 'Checking Tocation.
Qe |
(@) elMap.textCortent

nsg:

“unction success (position) {
mag - <haTong ety
msq 1= position.coords. Tatitude | '</h3s';
msg +- 'engeLat: tudescbr's
g += posiLion.coords. Tong! e + '</h3>
&TMap. inreriiTHL = ms:

function failmsg) {
Wap. LextCantent =
consele. o7 (msq. code);

Vi

7

4
7
i
1
v
i

7
7

£09/ds/guutoeaLion. s

HTHI el
He Tocation mse

15 geo supported
Ask for Tocation
Say checking...
Nt support ed

Add manual entry

6ot Tecation
Crisile messige
Add Tatituce

Create message
Add Tangi Lude
show Tocation

fot got Tocation
S [xL inpu
Loy the error

OEBPS/Images/p605-001.jpg
v

(0]

©

[Selcciel

P B 8O @

@ 9@

£/ SELUP THE STRIPT
[function ()

cocument, forms. ragister,noValidate - true; // Disable HIMLY valication

S0 forn'}.on('subni ", Functions) | 77 When o i sumiLLed
var elenents = this_elzments: 77 Colection o7 fom controls
var valid = |3 47 Custom valid ubject
var fstalt 47 1séalic: checks fom controls
var 7 isrommialic: checks entire form
4 PIRT CHIECKS (calls functions outside the event handler)

T - (elments. dongth 13 i = 13 i) |
7/ Next Tine calls Va1 catefequirad() see pEds & validazeTypes() pol0
iS¥al1d - validateRequeran(slements[i]] A% vxlidstelypes (s man=s[]):

RRGERED) 7 Tf 1% does not pass these tuo tests
shouLrrorvessage(elensats[i1): /¢ Shon error messages (see peos)
) else | /7 Otnerwise

vemoveErvorties sage (elements[1); // Remove rror messanss
) 7/ End At statement
salidlelzwents 1] ¢] = isValids 77 Mid eloment Lo the valid object
; 7/ Tnd for Toop

// PERFORY CUSTON VALIDATION (just 1 of 3 functlons - sse ps1d-ps17)

it (1validatetio(]) | /i Gall validatesio(), it not valid
showErrortlessage (document .getETementyId('bla')); // Show errer
walid.bio = faise: 4/ Updare valid cbject-net valid

| 77 Dlwrwi
venovelrrorWiessae {cacument. getC1enentOy[4(*310')); // Remove ervor

// o wore functiors follow here ({see pold-pbl/)

/¢ DID IT PASS / CAN IT SUSMIT THE FORM?

77 toan throusit valid object, §F there ane eerors el isFomValid 1 Talse
Zor (var fie1d 1 vatid) (7 Check properties of the valid object
T vt | 7101 1% nat vatia
“somianid - fals 77 set 1sFamyzlig vartable to false
breaks 7/ S50 <he tor logp, errer was Tound
) 77 otherutse
IsformVaTid = true: 77 The form 15 valid ard 0K to submit

J¢ 17 the fom dic not validats. prevent 1t being submitres

5 (isrornvatid) { /¢ 1t isTormbalid is not true
cpreventerut ()3 J¢ Prevent the form buing subuitied
DY 74 tng event handler

. 7/ Functiens callec above are here
RO /{ End of 1IFE

xsigs st aation. s

OEBPS/Images/p419-002.jpg
“HTmL | <O sgeatacation ntel

Js/geclocation.is"a</scrips

“seript src

OEBPS/Images/p508-002.jpg
#photo-viewer {
position: relative;
height: 300px;
overflow: hidden;}

#photo-viewer.is-loading:after {
content: url (images/10ad.gif);
position: absolute;
top: 03
right: 03}

#photo-viewer img {
position: absolute;
max-width: 100%;
max-height: 100%;
top: 50%;

Teft: 50%;)

a.active (
opacity: 0.3;)

OEBPS/Images/p380-001.jpg
iy Classovent s
<ing src="file.png’ alt="Locarien” />
Focat ion= /<l J=Frent dites

</div=

OEBPS/Images/p508-001.jpg
AL fphto-vismr it

<y i photn viewer's</i v>

<dfv 1d=" thumbnat 15"

mg/p10to-1.J53" Class-"thumb active’ title-"Elcarberry mallow">
/U L. al L="Elder burry MarshialTon® /a<jax

g /p10to-2. 107" T1t1e="Rosz Marstmallow” class="thumb*>

g /thutb~2. 1pg’ alt="Rose Mershmallon® o<z

my/prolo 3. jpg® 1iUe="Chrysanthemom Harsiml Tow® cTass=" k'

ma/thumb~2. 1pa " a1 t="Chrvsanthemum Mavsmmallo® /></3>

OEBPS/Images/p516-001.jpg
a1faricer.ptm

<div class="s|1da-viewer"s
<0ty class="s]{de-qroup’>
<7y class="slide slide-L"<l-- slide

iy Class Bl 25<l slide

< cla: s<l-- slide

<t clast <l slide
~/iv

</dtix
<diy class—"5 11 da-buttons™ = /iv>

content
conleni

content
content

OEBPS/Images/p516-002.jpg
atfessianicerces

slice-vizuer |
wosiLion: relatives
overlow: nidden:
heights 3ulpx;}

-sTide-group {
100%;

relative;)

heights Tk
display: none;
position: sbsolutes]

.s11de:first-child |
display: blocks)

OEBPS/Images/p089-001.jpg
HTML O3 fbasiesfunctivn. et

SIRETYRF hiai>
<>
<neac>
“title-gasic bunctions/title-
<lk ra1="stylasheat® nret=ress/c03.css’ />
</heat
<oy
<Nl>TraveTWorthy</hi>
<01 1o="ressace"NeTcome to our s7tel
(s Tune i, " ser

<sripl
</bocy>
<ntat=

OEBPS/Images/p275-001.jpg
08 feeus -

et ion eheckherme) | /7 Tecture function

var username = el.value: 7/ Store username in variable

1 (usernane. Tensth < 5) { 77 11 usernzne < 5 characters
elMsg.classhane - ‘warning'; /{ Change class on message
elMsq. taxtContent = 'Not long enough, vet...'s// Update messaqe

)oelse [7/ Otherwise
My, extCantint = 13 /AT —

}

ko Cgllsernanes() | £7 Tectre fumction
elhsg.classNane = ‘tip’ 7/ Change class for message

elMsg.innerdI. - ‘Usernane must be at least b characters's // Add message

var el decument gotk lonenthy (usernane) /7 lsernane nput
var elMsq = document.getE] enentByld(*feechack'}; 7/ Elemen: to hold messate

/7 W e wseename Tt gains / Toses oris 6] funed fons abiowe:
el.addEventListzner(‘Tezus . tipUsernane. 7alse): // focus call tipUsernama()
el addcventListaner(‘blur', checkUsernane, false)s// blur call check

OEBPS/Images/p194-001.jpg
document refers to the documant.
object. You always haveto
access individual clements via
the docunent obiect.
omsecT
I

The getClemantByld() method
Indicates that you want to find
an element based upon the
value ofits id attribute.
METHOD
I

document.getElementById('one')

MEMEER OPERATOR
“The diot notation Indicates that
the method (on the right) is
being applied to the node on the
et ot thinariad:

|

PARAMETER
The method needs to know
the valu of the 1d attribute or
the element you want. ltis the
St ol tha rating.

OEBPS/Images/p275-002.jpg
Create ausername:

OEBPS/Images/p089-003.jpg
Sign up to receive our
newsletter for 10% off!

U T "

OEBPS/Images/p364-001.jpg
<rfisjeramie. is
S(tunction) {

14 stTup

Var $195t, $newl temborm, Snew ! Scrut ton
var “tam = g

(!

e = $(" fnewlLenFun' s
('#nenltembuzton'):

“tem 1s an emwty string
Cache the unordered 1t
Cache farm Lo add wew | Lons
Cache button to shaw Torm

$(* 1) hide() -cach (function {neex) ¢/ Mide 1ist itens
$ithis).deTay(450 * index).acain(1600 /7 Then fae then tn
i

7/ TTOH COUNTER,

Hunction uadatetount) | 4 beclare function
var ftems = §('T1|classl=conplate| '].langtn; // Humber of ftems fn 14st
$("scounter) .text (izens)s 77 Added inte counter circle

|
updateCount {};

canl the function

/¢ SFIUP FORM FOR NFU TTFMS

o // Show the button

7 Hide the torn
shoaForm').on{'c11ck!, function() { 7/ When new Tten clicked

Snewl tendution.hide(): 7/ lide tre button

Fncn T LonFors. show) 44 St the Torm

s

OEBPS/Images/p550-001.jpg

OEBPS/Images/p089-002.jpg
w3138 sasic-function. s

var sg - 'Sigr up to rsceive our news etter for 105 oft!
funcLion updaleMessanel) |

var el = document.getClenentByld{ message’):

Sl leattentent

upcatehassage(;

OEBPS/Images/p453-001.jpg

OEBPS/Images/p178-001.jpg

OEBPS/Images/p542-001.jpg
Create varinbles:
rins: an aray linking peopie with rows

ST & $A2%C minimUm and maximum rate Inputs.
Steb]= stores the table that holds the results

o FUNCTION: naszcws)
Croatos tabla rows & pepulatss the rous array

ANONYMOUS FUNCTION

Crasto Srow holdis <1r> sloment
‘Addl <te>s holding name & rate.

Add new obect to rows array
o Ak raterences a peramn & 1w

— 50O NEXT OBJECT IN pe0p] 2 ARRAY

FUNCTION: sppanchons () adls raws to <2200y

@ Croste<thody to hold <t slements
o + Add $row to Stbody slement

G0 TO HEXT OBUECT I rows ARRAY —
o add tholy> to SLater

@ FuNcTION: upte() upastes tabie contents

LOOP THROUGH OBJECTS IN Tows ARRAY

Hide row Show row

@ FUNCTION: irit() sets up the script

1] Setup sticer
@ ColimakeRons), sppendions(). update(]

@ calinit) whenthe DOM has lasded

OEBPS/Images/p291-001.jpg
fon reconierGoLets (o) | ¢/ Beclare reconierCuntrals ()
11 02 (7/ Tf event onject not present
e = window. svert /1 Use 105-8 fallnack
1]
Target = avent.tarfet || event.srcElement;// Get the Taret element
i (event preventdetault] { /¢ If preventdetault() supported
eopreventle Gl L) 7/ Slop defaull action
) etse [i/ Gtnerwise
event.raturavalue - false; /¢ 1t 7allbacks stop default action

switch(targat.gatAttribute(*data-state’)) { // Get tha data-state attribute
case 'record 7/ Tf 17s value 1s record

record(targst): Jf €al the record() function
by 70 Bl funct fon o where ettt
case 'szon': 4/ 11 155 value 13 stop
stoa(zarget); 7 Gall the stop() function
by 74 il funct fon Lo whore callesd
// Wore buttons could go here.
}
Turtion pecon{Larget) | 10 Dectre function
targez. setattriaute(‘data-state’, 77 Set data-state attr to stop

target. textiontant - 'stop’ 71 et text to 'stop’

“unctien stop{target) |
LargeselALUrite('data stale’, recont’}//Sel dals slile illy Lo rcord
vecora’; 47 Set text 1o 'recorat

OEBPS/Images/p437-001.jpg
RN\

THE MAKER BUS

Buy tickets

hem: Single tcker
cow 2
ay: 1

OEBPS/Images/p273-001.jpg
Tunctien setup() | ars function
var texcioputs 7/ Greate variable
textinput - cocument..gettlenentbyld [usernane’); // Get username Trput
textinput. focus () 1 Give usemnzme facus

<o/ itoad.js

window. addCy

entlistener(*losd'. setup, false): // hen page Toaded call setup()

OEBPS/Images/p273-002.jpg
NEW ACCOUNT

Create a username:

Create a password:

OEBPS/Images/p370-001.jpg
multimoog

multimoog
multimoog for sale
multimodal

OEBPS/Images/p370-002.jpg
®

1item added to cart
view car

OEBPS/Images/p370-003.jpg
Moog Music Inc. @moogmusicinc

Born today in 1896: Leon Theremin,
physicist, spy & inventor of one of the
earliest electronic musical instruments.
pic.twitter.com/theremin

OEBPS/Images/p281-001.jpg
atfis o

var el {0 Dectire wartibles
Tunction charcount(s) | /¢ Declare function
war LeaCkutera, charisply, cownier, st Gy 7 hectire vartanes

TextEnterad = document.qetE]ementéyld('message’).value; 7/ User's text
charDisplay - docutert get] erentey1d{*characzersLeft'); // Counter #lement
Counler = (180 (LextFnlored. englh])3 7/ W af chars Tert
charDisplay. taxtlontent = countey 71 show chars 1eft

Tasteay = documert.qetE]ementByTd(‘lastkey'}; 7/ Get Tast key used
Tastxey. texiContent = ‘Last key in ASCII code: : /] Create msg

&1 = docurent. qetElsmentay o message') // Get msq slement
el addeventListaner(*keypress', chartount, false)s 71 keyaress event

OEBPS/Images/p370-004.jpg
Choose your username

minimoog

This username is taken. Try another?
Available: minimoog70

OEBPS/Images/p281-002.jpg
MY PROFILE

| like cooking and\

162
Last key in ASCI| code: 68

OEBPS/Images/p095-001.jpg
function getSize(width, height, depth)
var area = width * height;
var volume = width * height * depth;
var sizes = [area, volume];
return sizes;
}
var areaOne = getSize(3, 2, 3)[0];
var volumeOne = getSize(3, 2, 3)[1];

OEBPS/Images/p107-001.jpg
1
hotel.name = 'Park';
| [

MEMBER OPERATOR ASSIGNMENT OPERATOR

OEBPS/Images/p107-002.jpg
hotel|'name'| = 'Park’;

OEBPS/Images/p107-003.jpg

OEBPS/Images/p204-001.jpg
var hotItems = document.querySelectorAll1('li.hot");
for (var i = 0; i < hotItems.length; i++) {
hotItems[i].className = 'cool’;

]

OEBPS/Images/p107-004.jpg

OEBPS/Images/p579-002.jpg
AVASCRIPT 13/gjdisabt st 3o

@ (tunction()}{

1

®
@

®
®
@
®

@
®

s
1

var f LF enentBy T wewPui*)5/ The Torm
VAT pEssword = document.etClenentdyio'pwd) // Password input

Var submit - cocunent.gettlementyle(suonit'}; // Submit button
var subrittes = falses /i llas form been subnittect
submit.disabled = true; // Disable susmit button
submit.clzsshene = 'aisabled’; 77 Style submit button

47 0 fnpats Chedk wether or nol Lo enable e submi bkl
addCyens(oasswore, *inpuc . Tunction(e) £7/0n input of passord

var target - evtarget || e.srctlenent; 7i larget ot svent
subini . disastel = submited || Ilargel valus; /7 Set disabled property
/7 11 forn nas een submitted or pud has 1o vlue set CSS to isadled
Submiz.classhane — (Marget.value | submitted) ¢ ‘Cisabled’ ¢ enabled s

Ti
47 00 submive DisabTe the form so it connal be submilled aysin
“4dEvnz(form, *subnit’, function(e) { 77 0n sutmit
91 (submit.disaded || submitted) 7/ 1f disabled OR sent
Copresent el L) 5 7 St for <ubniss lon
ratum: 7/ Stop processing furction
77 Utnerwise continue...
sabmi sl = ey 77 Dbl submi 1 bl Lon
submizted = tru 77 Update sutmitied var
submiz.classhans - ‘d1szbled'; 7 Update style
/7 Deno purgoses orly: What would haye been sent & Show SUbTIL 1S disanled
= e T T 47 Stop torw <abmilLing
alert(*Passwore 15 * | nassword.value)s 7/ Show the text
n

ms

OEBPS/Images/p579-001.jpg
CHTmL | exsabTeosubar el
<ladel Pac’ -New password:</label >
<irput “password” 1d="gad® />
<iOUT TypE-"SUOW L’ G- sumi T value-"submit”

OEBPS/Images/p615-001.jpg
i3/ foanidaLion. s

sunction validateio() {

() warbfo = cocument.qetElenentBYLd('blo'}; // Stcre vef to bio text area
@ ar valic = bio.value.Tensth <= 110; 7/ Is b0 <= 110 cnaracters?
& i (Lanid) (7777 o, sel an ceror

@ setCrrordessage(bic, 'Your bio shoul not exceed 140 charicters'

}

) return valid; /4 Return Soolean valuz

OEBPS/Images/p615-002.jpg
VAS|

pT etzigs foatidation. s

“unction validatepassuerd() |

(D var pessword - docunent getETementByl(*passuord)3/ Store ref to elenent
@ var valic - password.vilue.length - 8; 7/ 1s its value »- 8 chars
& 1f (wantg) | 7i It not, sat_error msq
@ setCrrorNessage (passiord, 'Fassword muist de at 1esst @ characters');

)
@ rewrn vatid: i1 Return true / fal

OEBPS/Images/p168-001.jpg
EXPRESSION RESULT
true
false

OEBPS/Images/p443-002.jpg
0815 secqe-map. s

sunction init{) {
o moplpLions = | 7/ SeL g e ol jon
center: new google.mzps.Latlng(40.762710,-73.855310) .
maplgpeld: gaogle.mass.Maplypeld. KOALHAP,
zoom: 12

i

SRl J7 Hapl) draws @ map
VenueHap = new oo e.maps . Map (docuent .getElensncy1d(*map’) , mapOptions);

fun TesdScript()

var script = document.cresteClement('script'}s // Creats <script> element

cript.srs httas//maps.googleapis . confirans /an/jt
sensor=ralsescallback=initialize's

cocumenz. 20dy . appendCiiTd(seript /4 Add elenent o page

@ window.ont

d - loadseripts #/ tntoad call

OEBPS/Images/p443-003.jpg
RESULT

M

THE MARER s

OEBPS/Images/p443-001.jpg
HTML <oa/gsgiensp nte]

<div io-"ran" v
<SCPPE Sre="1s/ocTTe-nap. 5%></script>
“bocy

OEBPS/Images/p168-003.jpg
EXPRESSION RESULT

(Nan
(NaN

false
false

OEBPS/Images/p168-002.jpg
EXPRESSION RESULT
(undefined =

nll) true

(nu11 == false) false
(undefined == false) false
(nu11 == 0) false
(undefined == 0) false

(undefined Fatee

OEBPS/Images/p597-003.jpg

OEBPS/Images/p597-002.jpg
JAVASCRIPT c13/js/number-polyfili-eg. js

yepnope ({
test: Modernizr.inputtypes.number,
nope: ['js/numPolyfill.js', 'css/number.css'],
complete: function() {
console.Tog(*YepNope + Modernizr are done')s

DH

OEBPS/Images/p621-001.jpg
fe/psssvard-sianp. s

@ (tunction O ¢

@]

;
8

9 _@ 9@

@

var password - decunenl.getE]umentByTd(passwerd) /7 Stere password inpats
var passwordConTirm = documen:.gesClemsntlyld(* conf-passuord')
fanction seterrordigh lighter(e) {

var tarqet - e.target || e.srcElement; // Get tarast elenent
9 (target.vale.Tength < 8) { 77 1% its Tength 1s <@
Lorgrt.classhae — ' Tail ' 74 Sel s o fail
else { 74 Otherutse
target.classhame - 'piss's 7/ set class to pass
function reroveCrrort iglighter(e) {
var Largel = e.Largel || e.srcFlewen s /4 Bel Largel clonent
1f (target. classhane === '%ai1’) { 7/ 17 class 1s fafl
target.classhame - 71 Giear class
)
function sassworcsMatchie) {
var tarqet - e.target || e.srcElement; // Get target elenent

/{11 ¥alue matches pud and 1t Is Tonger than 8 characters

IF ((uasswortuilue === Largelvilue) 8 Largedoudue. Tength = 8){
tzrget classhame = 'piss /7 set class 10 pass
else | 77 vtherwise

gL clssh 77 Sl Elass to fail

addEvent (passwore, ' focus', removesrrovHighlfghter);
addCyent (passwore, 'Blur ', secCrreriighlighter)
aldFuen’ (sswordCon i, fovns ', rmveFreork ighl ight
addevent (sassworeCon?irm, ‘blur', passwords|

s

OEBPS/Images/p597-001.jpg
c13/number-poly i1t .ntmt

HTM|
<head>
<script src="js/modernizr.js"></script>
<script src="js/yepnope.js"></script>
<script src="js/number-polyfill-eg.js"></script>
</head>
<body>

age">Enter your age:</label>

<label fo
"number" id="age" />

<input typ
</body>

OEBPS/Images/p210-001.jpg
<03 ing.uan

WIS =t Elass="lol e Freshe/eoms Tigs</1is<11 1= 1w
Class="hot*>pine nuts</1i><11 1d="thres ot =Roney/1+-<
id-"four” “balsanic vinegar</11-</s1>

OEBPS/Images/p210-002.jpg
/i

s JAVASCRIPT

7/ Select e siarting poinl and Find ils /0T ings
var startltem = gocument.qetElenenteyld(' two');
var orevitem = startitem.previoussibling;

var nexl Tom = sLavL Lo nex S1b1ng;

J¢ thanga tha values of the siblings' class attributes
orevitem.classhane = ‘complete’;
nextItem,classane - cocl

OEBPS/Images/p210-003.jpg
i

:
oL

® Previoussis
NEXTSIBUING

OEBPS/Images/p203-002.jpg
2: AFTER THE FIRST SET OF STATEMENTS
HTM| 05/query-selector.html

<11 id="one" class="cool">
fresh Figs</1i>
i id="two" class="hot">pine nuts</1i>
hree" class="hot">honey</1i>
our'>balsamic vinegar</1i>

OEBPS/Images/p203-003.jpg
SIAFTER THE SECOND SET OF STATEMENTS

HTM| 05/query-selector.html

<1 id="one" class="cool">
<en-freshe/en> figs</1i>
w0 class="hot">pine nuts</1i>
hree" class="cool">honey</1i>
our'>balsamic vinegar</1i>

OEBPS/Images/p203-001.jpg
WHEN THE PAGE FIRST LOADS

S e

<11 id="one" class="hot">
fresh Figs</1i>
i id="two" class="hot">pine nuts</1i>
hree" class="hot">honey</1i>
our'>balsamic vinegar</1i>

OEBPS/Images/p220-001.jpg
one">fresh figs</l11>

11— attribute

OEBPS/Images/p114-001.jpg
h = 600;
var shape = (width: 300};

var showlidth = function() {
document.write(this.width);

showWidth():

OEBPS/Images/p018-001.jpg

OEBPS/Images/p310-002.jpg

OEBPS/Images/p310-001.jpg
w7/ sitooping. it JAVASCRIPT

$('11 em’) .addC1zs5("seasonal ") ¢
(' 11.hot ") . 2ddClass (* favori £

OEBPS/Images/p257-001.jpg
paratars . js

stansron

oo

£/ Bel usernane input
7/ et feednack element

var elUssrname = dozunent.ge(E]enentBy Td(* uscrnan:
var elisg = document . getCementiyd('feecback’

functien chockUserm s minLeng L) /7 Dectare functior
if (elUsername.value.Tength < minLengzh) [7/ Tt username too short
2y, zextContent = ‘Usernane must be ' 1 minLengtn | * characters or mare's
el /7 theruise
sTbsq. dpnertTAL = ¢ 77 Clear s
)

elUsername.addtventListener(*blur', function(} [/1 dnen it loses Focus

checiisemare(5); 77 Pass anments nere

s false)s

OEBPS/Images/p041-001.jpg
document

<html>

<body

<title>

Constructive
& Co.

rel stylesheet

555-3344.

OEBPS/Images/p532-001.jpg
A BRIEF RISTORY OF JAVASCRIPT

1996 Jan

Netscape Navigator 2 contains the
first version of JavaScript written
by Brendan Eich

Microsoft created a compatible
scripting language called JScript

Netscape gave JavaScript to the
ECMA standards body so that its
development could be standardized

1997 Jan

ECMAScript 1was released

2014 May

Time of writing: ECMAScript 6 is
close to being finalized

OEBPS/Images/p041-002.jpg
2

Constructive & Co.

OEBPS/Images/p373-002.jpg
(D xhr.onload = function() {
@ if (xhr.status 200) {
// Code to process the results from the server

OEBPS/Images/p187-001.jpg
Sz

OEBPS/Images/pink-disc.jpg

OEBPS/Images/p594-001.jpg

OEBPS/Images/p594-002.jpg
© Is placehoder
supported?

aate varlable: ength: number of forms.

+

LOOP THROUGH EACH <form> ELEMENT ON PAGE

1 Call function: showPlacenol der (]

h'— GOTO NEXT FoRM

o FUNCTION: shonM zcehalder ()
| add placeholder to elements without ne.

e JIP L00P THROUGHEACH ELEWENT N FORN

Craate varlable: el: current slement

o - 9 Pecemider? 9
o — |
T
© |
R

+

Event: focus on this slsment
1 +
ANONYMOUS FUNCTION:

1f placeholder textis in the
Input, smpty it & make text
black

® T Event: blur on this element.
1
ANONYMOUS FUNCTION:

@ | | ittheinput is empty, showthe
Placohodor toxt in 12y

60 TO NEXT ELEMENT

OEBPS/Images/p489-006.jpg

OEBPS/Images/p551-001.jpg
CHTmL | cteffitzer-search ntel

“tody>
<heacer>
“h1-Crestvarolks/n1-

“fheader=

<div it
“inquT type-"text® nlacshalder-"fi zer hy search® id

</div>

“div ig-"gallery ">

Filter-search® /=

dita Lgs=Animalars, Tustralors® ol ="Rabhi 10 j>
dzta-Tags= Photograshers, Filmskers’ alt="sea® />
ing/p3.Jpet dita-Tags= Photograshers, [ilmzkers’ alt="Der /

1m/p5. 65" data-tags="TTImmakers® z1T="Trumpet Player® /=

<img Svo-*img/ph.Jpe” deta-tags- Uesigners, Avimators” alt-"Logo Ldent®
Imq,/p7 . pa" ags="Photograshers® alt="8icycle Japar® />
data-tags='Designers* alt="Agua Loga" /~

Wit g Animatars, Tustralors® o 1= Ghist? />

<Serint sre-"gs /gquery.
<serit sre= s/ THTter-sesrch.1s%</scrips
/ooty

wfscripts

OEBPS/Images/p489-004.jpg
e ey e

OEBPS/Images/pii-001.jpg
©susmw
et
iz

Gried thin oGty
.
I oo

R

OEBPS/Images/p365-001.jpg
AVASCRIPT

/7 AUDING A KeW LIS| 11EM
SuewTLonZarn.on{“sabnii L', funLion(e] |
e.preventlefault ()
var text - §("inputatext).val ()i
SISt anperd('<l>' 1 text 1 '¢/11>1);
S input:text').val(* ')z
uptteCount ()5

s

// CLICK HARULIRG - USES UELEGA| LON ON <
Histoon(*cltck’, 11, Function() {

var $zhis = $itnis); /"
var comilels = FhishasElass {copl
it (comlets —- trug) { y

Sthis i Vi

pacdinglert: +-180"
b, 500, 'swing', function() "
$chis.remove(}; 1
s
else | /7
ften = stris.text(); 1
Sthisromove(); %
fist /f

Lapaenc (<11 clzss-\"coplete\">"

Aiide). faczIn{300]5 2
uadatsCount () o

"

ns "

crfis/essepie.is

7 e o it i submiLled
7/ Prevent 7o being submitted
47 Get value of taxt nput

7/ At Ttem o end of the 11st
7/ oty the text input

#7 Update e count

ul> ELEHERT

Cache the element in a jouery object
o)y 7 Ts Tlom complele

Check if item is complete
70 0, animile opacity + pacding

Use callback when aninalion compleles
Then completely remove this item

Othartse indicate 1t 15 complete
Get the text Trom tne 1ist item
Remove Lhe 1is]
Adc back Tc end of 1st as complete
- item + '</19=")
Hide il so it cn Lo
Upaste the counter
Fne of aise option
Enc of avent hanler

fadad in

OEBPS/Images/p489-005.jpg
THE FLOWER SERIES

OEBPS/Images/p489-002.jpg

OEBPS/Images/p543-001.jpg
[0}

@

(tunction(){

v rams - ||
fmin = S(#value-min').
smax - S(*4value-nax),
Stalle - §('trate

function makeRows() |
pecale. forcach(function(person) |

war S - S(talias/ e

12735 dpmanictiicer s

// FEOPLE ARKAY GUES HERE
7/ rows array

7/ Pinimum zext trput

/1 Maximm text input

7/ The Laivle Lhal shows sl

// Craate table rous 2nd tne array
7/ ror each perscn object in people
77 Creale a ran for e

$rov.zppend((' <td~/td>") Text persan.name))z /7 Ado their name

Srow.zppend(§('<td</td>"). text (person.rate)

7/ At their vate

voms ush (] /] Add object Lo cross-relzrences Letueen people and rovs

person: person,

Selemert: §row
D:

)
T o ppeniRows () |
var $boty = S(*<thody></thedy>');
vons. fortac (runction (ron) {
5 e (row. $eTcent)
)i
Stavle.ppend(Stbocy) s
|
fanctton update(min, max) {
vons. fortach (function (row) [
B (o person val
vow. $elznent. shon)
| etse
row . felmn Uhide()3

)
+
function int() {
S(*4slider®) nolliS | der({
vange: [0,
serialization

> i B o

4/ Reference to tne perscn object
7/ Reference to rou as query se

ction

¢ s raws Lo L L
// Craate <cboty> element

/7 tor each coject i the rows array
14 N Lhe WML For Ui row

/¢ hd the Tows to the tasle

J// Update the table content

7/ tor each ron in the rows array
son.rate <= wan) | 7/ 16 i range

7/ Show tne ran

7/ Gtnerwise

7/ ide Lne ron

7/ Tasks when script first runs
J/ Set up the slida contral

0], start: [65, 90], handlas: 2, mergin: 20, connect: true,
i to: [$min.Smar],

resolution: 1]

).charge{tunction{) { update(smin.val(), Smax.val(}); 1)

nakRawe (]3
appendians():
upezte(imr.val (), $max.val ()}
1
$(inte):
0

ate Lab1e vows and vows array
77 Add the rous to the table
7/ Update table to show matches

/£ €aT) 1972() when DON 15 veady

OEBPS/Images/p489-003.jpg
THEY SAY NO TWO
MARSHMALLOWS
ARE THE SAME...

Sttt e st i

OEBPS/Images/p586-001.jpg
o

8 6060 ©

Craate variablas:

£4pe &MoceT store the drop-down boxes.

Create oblects:

Ganeras & projectors store the equipment fists
+

Event: change on equipmant type select box.
1

ANONYMOUS FUNCTION:
Popiates tha drop-down box

Ie the value
enoosa?
Callgetine () & Add<opLion
store matching object *Please choo;
In mode1s variable atypo.. first”
| L
Create vaniable: opticns

‘Add <opt-on> 'Plaase chocse a mods”

+

LOO THROUGH EACH KEYIN OBJECT

1 Add <o Lion- element
\—— coromertkevmomseT

After loop: update <sel=c:> box

FUNCTION: gethodels()
Got modsi for sclocted cquipment type

0 iz ©

15 user osking
Q R @

Retum object; orojectors.

OEBPS/Images/p489-001.jpg

OEBPS/Images/p264-002.jpg
var target;
target = e.target || e.srcElement;

OEBPS/Images/p221-002.jpg

OEBPS/Images/p264-001.jpg
function checkUsername(e) f{

if (le) {
e = window.event;
}
}

OEBPS/Images/p221-001.jpg
s/

¢ St e Cies Vst ilon ina varialle
var firstitem = document.getC]ementById('one']

7/ Get the content of the Tirst 1ist 1tem
Var itemContent = firstlten. innerlfTHL:

J{ Update tne content of the Tirst st ftem 50 1t 15 a 1k
“irstitan, innerdTHL ~ ‘<3 href-\"hTtp://exangle.org\™>" + icenContent + '</a='s

s

OEBPS/Images/p264-003.jpg
function getEventTarget(e) {
if (te) {
e = window.event;
}

return e.target || e.srcElement;

OEBPS/Images/p272-001.jpg
EVERT

HIBEER

HRCWEER SUPRORT

02

inlaad

scrall

Firzs vnen the we page 12 finished load .
fire onnodzs of other elemenss thet
a5 images. scipts,er cjects.

winer the wes page is unload na (sually
ause anew page s been rec.ested)
See alsc the heforeunnad event (11 [765)
hich % Before the uecr naves a page.

wner the brewser encounters a JauaScript
o o an asset dossmt e st

wier lhe browser window 1as bee1 1

iire negeora
slement on the paze (such 25 3 <textarea> that

EAS e TS

The DOM Level 2 (Hov Z000) stetes that it fires
01 the document obje, bt =rio- o this it firec
an t1e window cbject. Browsers suoaartboth for
hackwards compatiility. and deselapers often

< lattach Taad evert Aandiors fo the windaw tnot
cocument) ohjact

The DOM Level 2 scaces that it fires o1 212 roce
ot the <aady> 2 ement, but in olde-browsers it
fired an the w s object (this < offen used
harkwards compatiilty).

Supoa-tfor ths event i rconsistert acrcss
browsers and zo1tis net ralable "2~ & v0r handiing.
293¢ vau lear~ mere about in Chapter 10

Browsers repeatedly fre = resice even cs e
wincow is being resized,so avcid using his svenl
totrigger comal cated cade because this mah:
mae the page appear e

Browscrs repeatediy fre
serclled, s avsiv ron ig compl ated code as the
user scrols

OEBPS/Images/p094-001.jpg
function calculateArea(width, height) |
var area = width * height;
return area;

}

var wallOne = calculateArea(3, 5);

var wallTwo = calculateArea(8, 5):

OEBPS/Images/p345-001.jpg
@7fisitonis

war ST Lenfor = ${* fncw LonForm
var §textinpu

var $nelterkutton - §('#newlzemButton’)
(0]

$('inputztext');
®{ SnewTLonBatlon.shon{)5
Snewltenrorn. mide():

$('#snowForn*).on(*click', function()|

Snew] Button.nide();
O SwatowForm. st)5
n:

@ Snewltarsarr.on{*subnft, funct:on(e){
® e.preventberault(

© var mowTest - $(mtstext)val ()
@ SCMslasr).after(<1t | newText 1 </l
Snewzentorm, hide

@[SuenlienbuLton. show();
StextInout.vai("')
0

OEBPS/Images/p051-001.jpg
<IDOCTYPE heml>
uta>
<hoad~
<title>Constructiva bamp; Co.</titlo>

<Mnk ral-"atylashest® href-Tess/col esa® />
</hoat>
<body>
<hl>Constructive Kamp; Co.</hI>
<peFor all ardars and inquirics please call <cw>§55-3348</ow</p>
— <seript src="js/add content. ja"=/seript>
</hody>
</t

Note howi the <seript> clamant can be moved “This has implications for where <aeript> clements
below the first paragraph, and this ffects where should be placad, and can affect the loading time of
the newgresting s written nta the pags pages (sas p36).

Constructive & Co,

600D AFTERNOON!

OEBPS/Images/p438-003.jpg
<087/ fsom
(

Ssessions' s |

imets 0.00%, "HiTlets *Intro fo 30 Medeling', “detail”: "Come..."}
me’: '10.00°, *tiTle": "Circuit llacking®. *detall®: "llead to the..."
mets "11.30%, *Lillets *Arduine fnlics®, ‘detail®s *Learn how..."|

OEBPS/Images/p438-002.jpg
09/ famgu st dala s

functior Timet

blectri (§scope, Shrtp) |

(1 Shilp.gel Lo n'}
o .success (function(data) | scope.sessions = cata.sessions;])
3 .error(function(date) | console.Tog(error'] §);

74 1he arrar could shaw a frisndly message o usars

OEBPS/Images/p438-001.jpg
“o9jarginar scems1 data.rim

<table rg-control ler="TimetablsCzrl "
et i Shst bt o thesthodetad 1</t
no-repezt="sess on ir sessions'>
<tds) | sessien Line | </Lu
<tde{] sesston.Title |js/ta>
<ta>| | session.cetall }l</td
“ftes
</taste

OEBPS/Images/p191-001.jpg
var itemOne = getElementById('one');

E

OEBPS/Images/p108-001.jpg
function Hotel(name, rooms, booked) { i
@ vawe

PROPERTIES

‘this.booked = booked;

o i
return this.rooms - this.booked; mETHOD.

OEBPS/Images/p519-001.jpg
@ S(.stider*) eachitunction(){

@)

@

&

@

w Sthis - ${inis),
var fgroup = $ehis.Find ("
var slices - $tris. ind{
war batLonfersy = L

var currentindex = 0,

var titesut;

7/ move() - Tne function to move

function advance() ¢

<

Timeout (timeout] :

s1tde-group}, 7 Get
slide')s

<he slides goes here

/s fsTider s

/{ tor every slicer
¢/ 6oL (e current s1ider

2 s1de-grous (contafner)
7/ Juuery object to hald a1l slides
¢/ Crale arvey 10 held oy bilons
4/ Index nurber of current sTide
J{ Used to store the timer

e next page:

/f Sets a timer batuesn slides
7/ Claar timer stored in tineout

7/ Start tiner ta rn an ananymans funczion every 1 sacands
timeout = setTimeout {fuiction{}{
1f (currentndex < ($s11des.length - 1)) [7/ If not tne last sTide

mova(currertincax + 1)

| elsn |

meva():
}
L 00n)s

)

Socn(§sTides, func

o) |

/{ Move to next stide
¢/ Onemise

#{ vove 1o the Tirst slidz

¢ Ml sacands imer wi11 wait

/f Greate a button lenent for the button
var $buttor - §(*<button type-"button*® class-"slide-btn"=bul ls</outton>);

1F (incsx

carren

ex) |

$ouzton. addClass (*active);

Shutton.on(*cTick’, function(}]

move(index) .
Deappet o sEide buLons') s
buttonarray. pusn{sutton) s
s
advarce();

i

I index 1s tne current item
2dd the active class

Creats event nancler for the button
It calls the move() function

Add 1o (e buLLans holier

dd 1 %o the button array

OEBPS/Images/p589-001.jpg
“label for-"bio"Short Bio {up to 140 characters)-/label-
Slexlorea name="Lio® (4="i0" rows="5" cols=*30"></Lex
<spar 1d="b"0-count* class="hide

<seript sre="fs/uti1itiss, s a</seripts
<script sre-"js/textarea-counter, 1s"></scripts

<o/ tertarea-counter el

OEBPS/Images/p589-002.jpg
@ trunction)
& vt docunent. getE]enentByZa(ba)
_war bioteunt - docunent.gett|emenzby.d('bio-caunt')s
(@ ddbiemi(oio. *focus . updateCounter] :
_ addrvenz(vio, ‘rout, updateCounter);
@ addlvenz(ote, 'blur'. function () |
© it (biowvalue. langtn <~ 110) |
® bloCount.className = *hide!s
0
@© function updateCounter(e) |
@ ovar Largel - e.bnged || esecFleents

©.

3/ Ausarsa-coun ar s
7/ <textarea> element
7/ Gharacter count e

/7 a1l updazeCounter() on focus
7 call updateCounter() on input

7/ on Teaving the elenent

var count
it (count «) {

bioCount. classNane = *error';
else if (court <= 15) {
binComt . cTasNan: = “marn’y
else {
bioCount.classhane - *good
var chardsg = "' + count + '

biotount . nnerkINL - charftsg
}

0

= 140 - target.value. length;

7/ 1t nio 1s not too long
77 Hide (e conter

£7 GeL the Largel af Lhe cven
7/ llow many characters are Teft

771 less than U chars tree
77 A clss of error
7/ If Tess than 15 chars free

£/ M clisss F wim
7 otnerwise
77 Ao cliss o good

* e ! charscters's // Message to display
4/ Update the counter zlement

OEBPS/Images/p202-001.jpg
s ey setusior. s JAVA

7/ wenySelector() only petures e Tirst wio
var 21 = document . querySelecton('11.hot };
e1.classtane = ‘cool '

// querySelectorAll returns a Modelist

7{ 18 sacord matching elenent (ha chivd Iist item) i< selactsd and changed
var 21s = dozunent .querySelectorAll {'11.hot };

21s[1].classhane - ‘cool*

OEBPS/Images/p202-002.jpg
pine nuts

balsamic vinegar

OEBPS/Images/p446-001.jpg
<03 gongtampsty o 5

styles: [/i styles proserty 1s an array o° objects
1
styters: [/f stylers property holds array of objects
e RN], /i Garall man colors
saturation: -50 | // Guzrall map saturation
1
bl
TeatureType: "rozd", /7 Road features
“geametry”, 7/ 1herr geometry (lines)

{ Tightness: 100

L 7/ Lightness of roads

visini lity: sinp {7 Toeel ot roud detait
1
1
fealureType: “Lrensil®, ¢/ Puic Lransport features
lementType: “geometry”, /7 Thetr geometry (Tines)
stylerss [
nie: "#°6600° 1, /7 Color of public transport
{ saturation: +30 | // Saturation of ublic Transport
1
1
featurelype: “trensit’, /7 ¥udlic transport features
2lementiype: " labels"s ALSIRE S
stylers: [
{ nue: “#7f0066" i, 4/ Lavel color
saluralion: +80 | {7 abed Saturation
1

Voo // Wore stylers snown in the code download

OEBPS/Images/p531-001.jpg
ADDING OR .add() Adds slements to 35e: 07 matchedelemeris

COMBINING

ITEMS

REMOVING ITEMS not() Remeves elements “om a set of matcned elements

MTERATING ceach() Applies s2me functionto each element 1 matched set

FILTERING FT1en() Reduces numherof clements in matched set ta those that =ty
aszlertar e pass atest “peciied fy a functian

NVERTING zodreay(] Canverss aiQuery celleciion to ar arrey of OM elements,

SRR SR OSSR NS

OEBPS/Images/p023-002.jpg
FLOWCHART KEY

Input or output Decision

OEBPS/Images/p373-001.jpg
(O var xhr = new XMLHttpRequest():
(xhr.open('GET', 'data/test.json', true):
®3) xhr.send('search=arduino');

OEBPS/Images/p023-001.jpg
When the button has been clicked

1
Get the name entered Into the form

Istherea
Q name to get? 9

Ask user the user to enter a name
Calculate the cost of the sign (letters x price)

Show the cost of the sign on the screen

OEBPS/Images/p079-001.jpg
JAVASCRIPT <02/js/string-operator. js

var greeting = 'Howdy ';
var name = 'Molly';

var welcomeMessage = greeting + name + '

var el = document.getElementByld(*greeting');
el.textContent = welcomeMessage;

OEBPS/Images/p418-002.jpg
PROPERTY mETUERS FECMIEED

Pos iLionErrur.cols A ernar el U follow g valss: Yes
1 Perisian cerid 2 Unavailble 3 Timecul

PR R R ST e s e e e T

OEBPS/Images/p079-002.jpg
HTMi c02/string-operator.ntml

<h1=Elderflower</nl>
<div id="content">

<div id="greeting" class="message">Hello
friend!
</div>
</div>

<script src="js/string-operator.js"></script>

OEBPS/Images/p079-003.jpg

OEBPS/Images/p337-001.jpg
©OOEEO

war $n2 = §('n2');
$0u1") kide()s
$n2.aoperd(

show<yz>')

$nz.on{*clice’, function() {
sha.

hildren(*.hat ']
ddiTass ('competa’ 3

Shz.find('a'}.fadeCut(]
0

07/ Uraversing. s

OEBPS/Images/p418-001.jpg
PROPERTY RTINS

Position.coards. atitude Lettude ndecima degrees

l‘vsnmn Lmrjx. ongitude Lcrgu e md»crl\d'y&s

I’wvt . Wm accuraty A L)‘d\ah\w»iud}um ude melers Yes

nmmm (mrjs artitade Metevsnbaue sef\zvel

Pos Lt cour e, a7 L Ladehceracy Adkaracy of il aus inmelers

Positian.conrts.heating Degrees slarkwise frer north Ka tin o ceice)

e Waveling in 1eLers et second N (o Lo cevice)

Pos iLiui.courds. spee.

Pl ban conrds. & N i th dsvice>

OEBPS/Images/p337-002.jpg
LISTKING

BUY GROCERIES e

OEBPS/Images/p524-001.jpg
006060 O 06

1IF
Pass In the jQuery selection ($)
FUNCTION: accordion()
Created on n object
Event: click on tab
ANONYMOUS FUNCTION:
Shows/hides corresponding panel
Prevent default action of button
Get button user clicked on
Get corresponding panel

Is panel being
animated?

Is panel visible?

Show panel Hide panel

Return jQuery object

OEBPS/Images/p109-001.jpg
e ‘ e :

var quayHotel = new Hotel('Quay', 40, 25);

var parkHotel = new Hotel('Park', 120, 77);
o L : |

NEW KEYWORD VALUES USED IN PROPERTIES
i T

ASSIGNMENT OPERATO!

OEBPS/Images/p259-001.jpg
05 s e

// et usernane input
// Get feedback element

var elUserrane - docunent ,gstt | enenty d('username
var elHsq = documert.qetE] ementByTd(*Teechack'

funclion chcklsorn o (minl cngl) | 74 Dectare funcLion
17 (elUsernane. value. Tength < minLengzh) | 7/ 1t usemnane too short
/1 set messzge
Bz, nerdTH

‘Usernane must be ' minlengch 1 ' characters or more

) etse { /7 Ocherwise
Clbg. fmerdTH = 71 Eloar mess:
)
91 (ellsernane. aadCventListener) § j/ If event Tistener supported
s aibventd < omer{ Hurt, funelion() (// Wi ssemane toses s
checkuszrmame (5); J7 €21 checkusernane()
)i talse)i /1 tapcure curing busble phase
clse | 71 Otherwise
elUsername. attachvert (‘onbTur*, funcion(){ // LT Tallback: onbur
chethlisomane (1) 71 G211 cherklscrnanc()

bH

OEBPS/Images/p087-001.jpg

OEBPS/Images/p445-001.jpg
T 08135 acoqta-nap-cont s s

var mapUpzians -
oot 14,
center: rew coogle.mass.Lztlng(40.762710,-73.965310)
maplyaeles gong!e.maps. Manlypeld. KOAWAP,

@ pancentrol: false,

® sowtonirol: trur,
ZaomCanzrolptions: |
style: aoogle.nzps

D perition: ooyl
)

@ mipTyseControl: true,

oon(ontro| Sty le. SHAL
nLrelPosiLiar. T0P_RTEAT

WTyeContro0pt ionsz |
3 style: google.maps MapTypecontralStyle. DROPDCHN HEND,
position: gaogle.mans. ControlPosition. (U LEr |

B

econtral: s,
scaleControlUntions: {
@ posttion: qaoale.neds.ContralPosttan. ToP_CENTER

@ siresiVisControl: false,
o overviewapControl: false

OEBPS/Images/p552-001.jpg
Sings: al Images

Sszarch: search input

ahe: airay of objacts (text / Images)
+

—— T —

O ndd objsct with two propertics to cacrc array:
Tement: reference 1o g
el processed 411 texl (xee botlom psS3)

@ Creato varlablos:
3

o ©

O

50 TO NEXT IMAGE ————

© 9T
2

nput on search input.

° Eve
R |
1

FUNCTION: filter)
Checks alt text & shows matching Images

Create variable: query to hold the quory

LOOP THROUGH EACH IMAGE

‘OBUECT N cache ARRAY

Crsate varlablo: index: position of toxt

e 06 e 60

ARG 9
|

Search far query within taxt using
7| Jingexvr() & store position in index.

11—
o |Q v O
\

Set display to ' to show image

-]

Set display to none to hids image
A coTonext mace

OEBPS/Images/p595-001.jpg
AVASCRIPT 1335 placebolder-pelyFiTl s

@ (hunction () ¢ /7 Place code in an LIFE
47 Tests Creates an Tupnt clenent, and see 07 (e plocelulder (s supportoed
@ if ('slacshalder in document.createClenent('inauz’)) [
return;
|
@ war lengtn - document.forms. |ength; // Get number of forms
" for (var 1=0, 1= lenging 1< 13100) [77 Leop throush each one
@ showPlacenolder (document . forms[i].elenents): // Call snowPlacenolder(}
e
@ function showMaceholder(eenents) | #/ Dectare function
© tor (var 1 - 0, | - elements. lengthi 1 < 15 1+-) { £/ For each element
wr o1 = cdowentsli|; £ Store that ol ement
i (121 placenolcer) (77 17 no slacenolcer
continu 7 Go to next element
} 7 atherwise
@ Sstlecoior = s6s6s 77 Set text 1o aray
_ clalie el.placshatder; /7 hedt placennider toxt
® addyent(el, *focus', function [} (1711 1t qains focus
AT (thisyilie === this.plachol: 70 T0 valieplacehalder
3 this.vatuz = 15 /7 Emoty text input
tris.styl2.color - 00000 /i Make text nlack
& 1
N:
® adluent (=1, "Wurt, fnction (3 | /70 blur event
- I (this.value === ') (77 1f the nput s empty
tnis.value - this.placeholders 7 Make vlue placeholder
g Tnis.styla.colon - ' #666656; 77 Wake text ray
]
n:

7/ End of for Teop
) /¢ End snouPlacenolder()
0

OEBPS/Images/p301-001.jpg
Is
queryselector()
supported?

Test D Great!
the next best option as|tis the best option

OEBPS/Images/p603-001.jpg
Create varlable: 3sFormial id

PROPERTIES OF va14 OBJECT

+ -
valid. Crue
vlid.em true
wr11d.possnond rrue

. Velid.conf-passuard true

? Is value false? ?

vel1d birthday talse

id.parents consent false
Set isForlatid o false Vlid.bto true
!
Provent cetault action o form submitting

The loop stops when the first error is found
(Note:thatsmor sassasi ire.siseady vidlaa.)

OEBPS/Images/p192-001.jpg
div
—
afl script

OEBPS/Images/p518-001.jpg
LOOP THROUGH EACH SLIDER, 1

ANONYMOUS FUNCTION:
Create slider for this set of markup

Store In variables: Sths: current sider,
Saroup: siides container, 51 12s: al sides,
BittenArray: buttans, currentindc
currant siide, TinsaUE. stores the timer

¥

LOOR THROLGH EACH SLIDE

ANONYMOUS FUNCTION:
Croate button for each lide

rsate a button for this ltem
1

1t the
cunent shder ?

Add class:

—

Event: click on this radic slemont
1 |

addbuttonts Cailmove(}

contamers amay (e ps20)

G010 NExTSLIDE ——

Call advar ce() function

FUNCTION: advance()
Clear and reset the timer

Call clearTineout) & setTimecut()

1
Isthis the
? ot ?
catove() Caltnorel)
16 next Slds. oSt e

e

OEBPS/Images/p044-003.jpg
javascript()

OEBPS/Images/p044-002.jpg
{css}

OEBPS/Images/p044-001.jpg
<htm1>

OEBPS/Images/p265-001.jpg
function chackiangtn(e, minLength)
var el el

if (1) (
© = window.ovenly
}
el - a.target | .soctlement;

My = eLnexdSin

it (el.value. length < minLengzh)

eTHs. TnnerdTH. = Userrane must be *

}else [
el AT -
}

var elUsernzme
it (elUser

me.2ddrvont | 1stoner) [

fisrevent.

Stener-a tr-svant-obiect s

{/ Leclare function
77 Detlars veriables

£/ 17 even object doesn't exist
77 e 1E Ll thack

{/ et target of event
7 Bl s wexl sibling

// IF lengch i too short set msg

minlength 1 ' characters or more';

£/ Otherwise
7f Clear messige

docunent. gatClemenzDyld(‘'usernams)5/ Gst username input

££ 1T eucnt Histoner

parted

elUsernana . acdEventListensr{ 'blur', furctioale) { // 0n blur event

checkUsername (e, 5] /#/ €211 checkusername(}
o Talse) 37 Captare in bubiile iha
v else { // Otherwise
elUsername. attachCvent('onblur', function(e}! /¢ IL fallback enblur

ehechllsername v, 5

s

77 €A checkisernan()

OEBPS/Images/p617-001.jpg
JAVASCRIPT xaigefostidetion. g5

sunction validateParentstonsent() |
var perentsConsent = docunent.gelE emen ByTd(*parents-consent');
var cansentContainer = document.getCemencbyZd(" consent-contarner)

©9

v vt = ey 47 wariaies vatin sol 1o L
G 1 (cansentContatner. class¥ane. 1ndex07(‘hice’) === -1} { // I checcoox shown
valid - parentsConsent.checkeds 7/ Undate valids is it checked/not
it (1valia) | 7/ 11 not, set tne error message
5} stEnroressane(parentsConsent, You nead your parents\' consent’);

® return valid; 74 eturn wnether v2ltd or not

OEBPS/Images/p050-001.jpg
The decwmanl. Oljuc: fapwakEs Wy The:

) ot of: B

entire web page. All weh browsers docunent object allows new

implement this object, and you can content to be wrillen inlo Lhe page.

use it just by ghving its name. Where the <script> element sits
osuECT METHOD

document .‘wr‘ite('Good afternoon!');
-,

MEMBER OPERATOR PARAMETERS
‘The docamant object has several Whenever a method requires some
methods and properties. They are informaticn in order to werk, the.
known as members of that oblect, data s gven Inside the parerreses,
You cznaccess the members of an Each plece of Infarmation ks called
Object using 2 dot between the object a parameter of the method. I this
name and the member you viartto case, thewrito() method needs to

O R R G R it it b e bk e rana

OEBPS/Images/p015-001.jpg
Scripts are made up of instructions
3 computer can follow step-by-step

Abrowser may use different parts
of the seript depending an how the
user interacts vith the web pae.

Seripts can run different sections
af the code n response to the
situation around them.

OEBPS/Images/p093-002.jpg
wallWidth
wallHeight = 5;
getArea(wallWidth, wallHeight):

OEBPS/Images/p093-001.jpg

OEBPS/Images/p439-001.jpg
ResuLt |
Session Times

Tive TiTLE
2820 I 30 el in

DETAIL
Coralnarn o4 2D il o s
you canhen ke n our bu Yo gt 1o
o 2 S 30 g s
e et i reless e stings ke
e, odic i e o,
Dl st et i tom £
riimipmssibyet

protesonn sonanr

make ing, ard e enced ackers ane.
smgiocrs i £a avwes 1y

OEBPS/Images/p122-001.jpg
WINDOW

DOCUMENT

HISTORY

LOCATION

SCREEN

CURRENT BRO!
WINDOW OR TAB

WSER

CURRENT

WEB PAGE

PAGES IN

BROWSER HISTORY
RL OF

CURRENT PAGE

INFORMATION
ABOUT BROWSER

DEVICE'S DISPLAY
INFORMATION

OEBPS/Images/p016-001.jpg

OEBPS/Images/inp143-001.jpg

OEBPS/Images/p009-002.jpg
E it SSIRE I B SRt
1 1

.fruit {color: pink; }

PROPERTY NAME PROPERTY VALUE

OEBPS/Images/p009-001.jpg
b iaablot it oo el nE SRR L

<p class="fruit">peach</p>

ATTRIBUTE NAME ATTRIBUTE VALUE

OEBPS/Images/p344-002.jpg

OEBPS/Images/p344-001.jpg
<0ffore.ntal [

STl gues here s/l
<dfy 1d="newl terDutcon*><buczon hrs
<form “c-"newltemtorn’ >
<ipul Lype="Lexd® 1d="1 Lonbescelplion® an chal e
<fnput typa=tsubmiz’ {d="addButton® valus='add® />
<ftorm

6 10

oNTarT "onex fteme/buttons</diy>

At descripion... />

OEBPS/Images/p530-001.jpg
ADDING ITEMS

REMOVING ITEMS

push()
unshitt(

popl)

ST Removesfirsteement from er-ay (e

ITERATING

forkach () Executes a function onc for ach zlement n atay”

sone() Checks Ifsome clemns inaray pass a ot spec fd by - function

evers() Checssite! elemenss inamay pass 3

tspecrec by

COMBINING

Jualues

concat() Creates new array corts ning the array and otherarray

FILTERING

I71er() Creates new array it elements tha 1ass 2 fest snecified oy a function”

REORDERING

ay sing 2 urction (callec 3 comoar

sort()

“overin() Rewrraes srdar of e aray

MODIFYIN

] s kT A A R N RN N S T o N i

OEBPS/Images/p022-001.jpg
CUSTOM SIGNAGE

Enter name:

CUSTOM SIGNAGE

Enter name: piesse enier s ome beion.

[svowcost]

CUSTOM SIGNAGE

s}
THOMA S

OEBPS/Images/p159-001.jpg
s et el

var sorel = 8¢/ Round 1 score
var scors2 = 8 /] Round 2 score

var passl = 6 // Round 1 pass mark
var pass? = 65/ Round 7 pass wark

7/ Sheck whather user passed one o7 the Two rouncs, store result in variasle
var winPass = ((seore! ~= possl) || (score? 2 pass?) s

// treate message

Var msq = ‘Tesit vequired: ' I(mintass);

S et e message no L
var el = docunent . gtE]zmentay
el textiontent - msg;

page
(' answer');

OEBPS/Images/p159-002.jpg
Resit required: false

OEBPS/Images/p451-001.jpg

OEBPS/Images/p588-002.jpg
© 00 o

©

Create varlablos:
bio: “toxtarca~ olomont for klo
bioCount: slement to show charactars loft

+

Event; focus & fnpa on bio <lealeres>
I

FUNCTION: upaatetounter()
Updatas the count and/or message

Gat target of event (<textarea)

i
Create variabl: count: result of
calculation (140 minus the longth of
content In <textires)

+

Is count < 07 ?

Add class: orror

Q remew @
Addciasigons Addicass vars
=
Creste anabie: crarsg message
Comaning s o Saraciers et

+

Writs mossage to scres

Event: 5lr on bl <textares>

ANONYMOUS FUNCTION:
Hides the counter

? s count <= 1402 ?

Hido the countor

OEBPS/Images/p588-001.jpg
Profile

Short bio mi to Iu characters)

. characters

OEBPS/Images/p201-001.jpg
08/ g et by a5

var elments = doca :

oml e FlenentsByTaghane (1) /7 Fiml <
if (elements.Tength > 0) { // 1f 1 or more are found

var el = elements[0]: // Select the Tirst one using array syntax
el.classhams - ‘cool’ 7/ thanga <ha value af tha ciass attribusa

OEBPS/Images/p417-001.jpg
REQUESTING A USER'S LOCATION PROGE

SING THE RESPONSE

Whan the browser respands,

° e are o pacsi teames:
i
et o sl o jetCurrent-osition() jetiurrentpos: tion()
LA [g 2
Nunsutemensiutao | calmethod: cauncyon e
e e sy Pl
RO E ey s

Poste znernor PotTion and
L s pamrds

OEBPS/Images/p201-002.jpg

OEBPS/Images/p372-001.jpg
1 2

THE REQUEST ON THE SERVER THE RESPONSE
The browser requests. ‘The server responds with data The browser processes the
informatior from the server. Gusuially HTML, XML, or JSOND. content and adds it to the page.

— i

OEBPS/Images/p215-002.jpg

OEBPS/Images/p215-001.jpg
Ciavascuiet | 08ty a1, 5

var 1tenlue = cocument etElenentById(w0) ; 47 Get secons 1st Trem

var ellaxs - itenivo, tirsth d.nodevalu /7 Get its text content

ellext - ellext.replace("pine mits', 'kale] /i Change pine nuts to kalz

f2enTwo. FivstChild.nodevalue = elText;

7/ Update the Tist item

OEBPS/Images/p223-001.jpg
08 adt-sT et

£/ freate o new oTemenl and store 0 in 0 variable,
var new[1 = document.createClement{'11):

0 Breate o Lot mode and stove 1L i a v
var newText = cocumnt .createTexthode(quinca')

£/ KLz e oo Texd node Lo (he new elenen.
newC1.3operdChild{renText]

/¢ FAnG the posit<on where the new element shoulc be added.
var pesition = document.getClementsByTaghame(ul*)[0]:

/¢ Insert the new element into fts posizion,
position.apaensth 13 (newt |1

OEBPS/Images/p223-002.jpg

OEBPS/Images/p312-001.jpg
‘Whenthe page is ready, the

$(document) creates a jQuery function inside the parentheses
object representing the page. of the _ready () method is run.
JQUERY OBJECT READY EVENT METHOD.

$ (document) . ready (function()
// Your script goes here

).

OEBPS/Images/p142-001.jpg
o fisjerame. fs VAS CRIP

 Ine script 1s placed inside an inmediately inveked function exprassion
whicl helus protect Ui scope of varablos &/

(tunction() |
// PART ONC: GALATL IOTCL GBJCCT AND WRITC GUT TIIC OFFLR OCTAILS

{7 treste s hote] bject using object Titeral syntax
Yar hote’ = {
naes park’,
roomtate: 240, // Amount in dollars
discounts 16, // Percentage oiscount
ferPrize: function() |
var offerate = this.reonkats * ({100 - this.giscourt) / 100}
return oterkate;
b

)

/7 Write cut The hote] name, standard rate, and the spectal rate

var hote . roomRate, specialfate; // Ueciare varables
hoteTName = docunent . getTemencEyZd("hotsTHane') : /1 Get elenents

roomkate - document.gett |ementyld(’ roomdace’);
spactalfate = document.fetElenertBy[d] soectzIRate')3

Lo Lex Content. = holel e, 74 Wrile hotel nowe
reomate.taxtCantent = 'S' 1 hotel.roomtate.toFixed(2); // Write voom vate
spacralkate. textContent - '§' + notel.offerbrice(); 7{ Write otter price

OEBPS/Images/p029-001.jpg

cover.jpeg
JAVASCRIPT
&JQUERY

interactive front-end
web development

JON DUCKETT

OEBPS/Images/p150-003.jpg
. . ——
— — —
STRICT EQUAL TO

OEBPS/Images/p150-004.jpg
| ==
—=
(]
STRICT NOT EQUAL TO

OEBPS/Images/p150-001.jpg
e
[r———
1S EQUAL TO

OEBPS/Images/p150-002.jpg
IS NOT EQUAL TO

OEBPS/Images/p480-001.jpg
try {

// Try to execute this code
} catch (exception) {

// If there is an exception, run this code
} finally {

// This always gets executed

OEBPS/Images/p472-002.jpg
@ Clements Network Sources Timeline FProfles Resources Audits » o1 47)= # &, »

® ¥ <woptame> v

© And ve're off. ‘corsole-nethods, jsil
A You entered 12 ‘consale-nethods. 57
A You entered 10 = P

© »1 console-metrods. 5:1/

OEBPS/Images/p111-001.jpg
JAVASCRIPT c03/js/mutiple-objects. js

function Hotel (name, rooms, booked) {
this.name = name;
this.rooms = rooms;
this.booked = booked;
this.checkAvailability = function() {
return this.rooms - this.booked;

}

var quayHotel = new Hotel('Quay', 40, 25);
var parkHotel = new Hotel('Park', 120, 77);

var detailsl = quayHotel.name + ' rooms: ';
detailsl += quayHotel.checkAvailability();

var elHotell = document.getElementById('hotell');

elHotell.textContent = detailsl;

var details2 = parkHotel.name + ' rooms: ';

details2 += parkHotel.checkAvailability();
var elHotel2 = document.getElementByld('hotel2');
elHotel2. textContent = details2;

OEBPS/Images/p602-001.jpg
o =
=—-—i

OEBPS/Images/p111-002.jpg

OEBPS/Images/p014-001.jpg
RS oo

OEBPS/Images/p553-001.jpg
AVASCRIPT cx2fse/iiter-saren.is

[0}
@

8

@ @S e @E

@

{tunction() | Jf Lives in an ke
var Sings = §(Aoy my') 77 Gel the inancs
var $search = §{'471Tter-search') the nput element
war cache - [11 71 treate an array called cache
Sings. eacn(runction() | Jf Tor sach inage
cace push(| 77 M n ehject Lo U cach array
elenent: this, 77 his inase

text: this.alt.trin().tolorertase() // Its =/t text (lowercase trimed)

s

T ion Fi71er() | 72 Dextare fillorl) functior
var query = this.value.trin(). toLowerCase(}s /7 Get the query

o FarFachi fanc fon L ing) | 7/ For cach vy
var index = 0 7/ Set index 1o 0
11 {osery) 7/ 1+ tnere is some query text

Indsx = 1. text. indexOf(query); // Finc if query Text 1s in thers

}

ncache pass i

ing.lerent style.dtsalay = index

L7 tnome’ : t'ijf Show [hide

it Confrout’ in fsearch[u]) [711 browser supports input event
Ssezrch.on(*input, 717ter); 7/ Use tnput even: to call fi1ter()
) etz { 77 otheruise
Ssoarchon(*keyap’, 1Tt 77 Use ey ewent. o T fillen()

+
s

OEBPS/Images/p351-001.jpg
l .offset()

—®

_—

.position()

l

OEBPS/Images/p359-001.jpg
The jQuery Plugin Registry

OEBPS/Images/p181-001.jpg
coffs/essepie. s

var table - 7/ Uit of table
var operator = taddition'; 77 Twve of zaliiTalion (defaulls Lo addition)
vari - 1 71 sex counter to |
var 7g 71 Message
4 (operator ——- ‘addition’) { /17 the cperator variable says adoition
il (i < 71) 77 it comier s Tess than 11
mSg 4= 1= ' <! tables ' = '+ (1~ table) + '<br /o'z // Calculation
i /¢ Add 1 10 the counter
)
ese | 7/ Otherutsz
wnile (i < 11) 7/ Wnile comter 1 less than 11
wy a E o e Ll st (i LbIe) + fe st/ Calcalalion
Jevs 7/ Add 1 20 the counter
¥
{1 AL e wessage Tt L page

var el = docunent .qetElzmentayld('blackbcard');
el inmertIbL - msg

OEBPS/Images/p270-001.jpg
function checkUsername() {
var elMsg = document.getElementById(' feedback');
1f (this.value.length < 5) {
ellisg.innerHTHL = 'Not long enough';
) else {
ellisg.innerHTHL = ' *;

1

var el = document.getElementByld(*username');
el.addEventListener('blur', checkUsername, false);

It's like the function had been
erittint ere rativar i ishar-to

OEBPS/Images/p529-001.jpg

OEBPS/Images/p254-001.jpg
Ol glament nude(el

METHOD

element .addEventListener(event

—

sLeMENT
DCM glement
node to target

Arerarence
tethe COM
element
b olter stored
in 2 variable.

,
. functionName [, Boolean]);

svenT coE SVENT Lo
Everlloind node(s) Narme of function Indicales samelina cal e
toinqussmaks feca capture, avc is usually set

tc 7alse (see 0260)

function checkUsername() |
/ code to check the length of username

1

var el - docunent.gatEl ement2yTd('usarname)3

el.addEventListener(*blur' . checkUsername, false)s
———

The A e 8 anElossd T skl M.

The code starts
by defining
tunction.

The fuactien
iscalledby ¢
svenl lislerer or
the st e, but
the parerinzses
i aritad.

OEBPS/Images/p068-002.jpg

OEBPS/Images/p068-001.jpg
c02/js/update-variable. js JAVASCRIPT

var inStock;
var shipping;

inStock = true;
shipping = false;

/* Some other processing might go here and, as
a result, the script might need to change these
values */

inStock = false;
shipping = true;

var elStock = document.getElementByld(*stock')s
elStock.className = inStock;

var elship = document.getElementById(*shipping');
elship.classhame = shipping;

OEBPS/Images/inp453-002.jpg

OEBPS/Images/inp453-003.jpg

OEBPS/Images/p352-001.jpg
HTM|

07 /position.html
-..quinoa</1i>

<p id="footer">© ListKing</p>

<div id="s1ideAd">
Buy ListKing Pro for only §1.99

</div>
</div>

<script src="js/jquery-1.9.1.min. js"></script>
<script src="js/position. js"></script>

OEBPS/Images/p352-002.jpg
M BUY LISTKING PRO
@ FOR ONLY $1.99

OEBPS/Images/p441-001.jpg

OEBPS/Images/p158-001.jpg
<O tagicar-and s
var scored < B/ Boun 1 score

var scors2 = 85 // Tound 2 score

var passl /7 Round 1 pass mark

/¢ Check uhether user passed both rounds, store Tesult in varizple
var assAoll =~ (scorel >= pass1) 8 (score? > pase?}y

// Lreate nessage
var msq = Eoth rounds passe

+ passBotn;

74 Wil the essage inla Uhe page
var 21 = document.getElenentByld(* iswer')5
xtLantent - msgs

OEBPS/Images/inp453-001.jpg

OEBPS/Images/p158-002.jpg
Both rounds passed:
true

OEBPS/Images/p424-001.jpg
.

Tz Arstpape you vish s
acced o history stazk.

ettt

CEmSA AR —_— e

Cllcealink:thiz pagepoes Clicca link:ther page poesPreseing nack fa

Totheupet Fstrysack o he et istorysack down the ity sack

TR el)

S T tunhial p
— G

OEBPS/Images/p610-001.jpg
£ {121.value) return cru

J/ IF element nas no velue, retumn true
/i Uthenise qet the velus trom data()
(2) var type - Siel).2stal'type’) || el .getAttribute(tyse'); / or get the type of input

2 i

functior i dateTypes(el] |
1

)T (el vl ideteTpe typel === unition') o // Ts Lype @ wethod of velidate object?

@ return vl daleTypeLiypel (e) 70 TT e creck 17 the velue validates
1etse (/i 1f nat

® retim true;

7/ Tezumn trie as 5t camar he tested

V

OEBPS/Images/p269-002.jpg
function getlarget(

/s feven-deTegation. s

/{ Usclare tunction

ir (e | U TE Uiere is o ovent ubject
winco.event: 7 Use o1 IC event onject
)
return e.target || e.srcElenent; J1 Gt the target of avent
@ function fremones) | /1 beclare function
/i Hemove item from tne list
@ var Larget, elParsnl, w1Grandpsrent; /f Detlare variables
(@) target - netlarget(el; 77 Gt tre ften clicked 1ink
@ etParent - target.parantliode; 77 Gt its Tist iten
@ T6randparent - Lrgelparen Kodepaver Wies 7/ Gol ity Tist
@ el6randparent. renoveCh1 d(eParen:): 71 Renove 115t ften from 115t
4/ Travent tha Tink Tran taking vou elseuhere
3 (e-preventderaut] | 71 IF preventherauTn() works
8 i At
}else | 77 Otherwise
® 71 se ol L= version

7/ Set up event Visteners to call fremdore() on click
Var el = docurent .cetClenentdyld('shoppiralist')s// €et snopping 1ist
O T ke sty e s s
(3 el.acdEventlistensr{'click!, function(e) [// Add 1iscener on click
/{1t calls itembone()
71 Vst bl ing s for Flon
/7 Othervise
@ el.attachivent{‘onclick', function(e) [77 Use old L= nodel: onclick
Trenbor(e 7 G2 fremdone()
0

OEBPS/Images/p269-001.jpg
“HTmL | <06jeventdelsaticn e

<ul i~ shoopral st”

<11 Class="cump’ i LenDune . phy? i d=1* ><ems [reshejer figs</ar</ >
<10 class="ccap! {emDone. php?id=2">pine nuts</11>
<11 L= comp FLenllone . phy? =5 Sy 1</ 11>

<11 clas:
<ful»

compTetetsbalsanic yineqare/a></11>

OEBPS/Images/p514-001.jpg
Pigeon

THEY SAY NO TWO
MARSHMALLOWS
ARE THE SAME...

e et

OEBPS/Images/p471-001.jpg
T 10/ console-Toa. 5
@ console. log("Ard e\ 're of...
var Sferm, widtn, bight,
Sform = §("4calcuator'):

7/ Indicates scrint is running

conscle.1ag{*You entered ', this.value }; 7/ Write value to console

Of“w Anput[type="text'] ').on("blur', function() { // Wren fnput Toses facus
&
i

S(#calculator) on (*suamt*, Tunction(e) 7/ When the user chicks subm
Lprevent el ()5 7 Provent. U form subari1Ling
(D console.log{*Clicked submit...'): 7/ Indicate button was clicked

width = §('antdth®) a1 {);
@ console.Tog{*Hiden ' + width); // tirite width 1o console

hetaht = §{snetont').val ()
® console.1og{*Hetgnt 4 heignt)s /i write neignt to console

area = width # netght;
consele.Tag(area): 4 Write zrea to console

®

$form.appand(*ap* | zrea 1 </p>')
Vi

OEBPS/Images/p286-001.jpg
EVERT I HIeEER HREWRER PR ORT

DONCu e Luaded Evert fres when Uie DOM Use s formed images, CSS, and Chreine €.2, Firefon 1
aScipLmigh. Ul be loading) Scripls s.erl o runearlier than — 1E3, Safari 3, Onera ©
& Toad event wh chuizits for other resources such as

and adverizements to loz¢ This msces tae page seem

fasterto laac Howsver, because it cces 1oz wait for Serpts to

load, the: DOR tr=e willnof contain zny | TAAL that we.Id have

beeng; by thasz scripts. * ranbe Sftasncr o the wirsaw

or docimen object=

Even.fires whent Une URL fash cienges (o Uioal e s1 e 1E8, Firelie 20, S
windaw refreshing), Hashes a1z used cr finks te specificpats 5., Chiome 2
(sometimes rown es anc1as) withina aage and 2o on ozges Coerz 121
thatuse &.4% 12 load ca-tent The hashz-ange svent handier

wrks or the window abjec:, and atter firirg, the event ablzc: il

havz a1dURI andneal B propert os that a0 4tz ur.befors and

aftertac hashehange

befurcunloal Even fres on the ainow sbiscl Lefore the page is 1 uaded. IL
shoud crlybe used to relp the user (ot loence.age themt €A,
stay o1 awebsite © tiey are ying tolzzve).For sxample, £ an be
helptul 0 £33 usekrcv, that chznzes 21 ator ey comal
have rot been saved. fau can 242 2 message 5o the cialog 20x
thatis shown oy the brawssr, but vou da rot ~ave centra) cver the.
text snowr before it or on the auttons t1e user c2n press (wnich

b B s S b i

Chreire,Firefon |,
far 3, Opera 12

OEBPS/Images/p416-001.jpg
Criesitiean M

S e T
“http://javascriptoook.com” etk
Would Lke To Use Your i

Current Location

Don’t Alow oK

FIREFOX ON PC
N—

OEBPS/Images/p200-001.jpg
gt Ly s nans. s

var slements = docunentgeLFlsment sByTassNane (*het 33/ Find fol it

if (lements.Tength > 2 { /4 1f 3 or more are found

var o1 = elements[2] /i Selact the third cns fron the Kadelist
Al.rlasstane - o0t 77 thange the valim of 115 class attrihute

OEBPS/Images/p200-002.jpg

OEBPS/Images/p544-001.jpg
i 9 kotors 8 Prtrghen G0 T @ g G

OEBPS/Images/p495-003.jpg
avascaier | s /aordion.js

@ S(.avcardion’).on('cTick’, *accordion onlral ', funclivn(e)| /¢ When clicked

D e.preventlerani(): // Prevent default acticn o button
3 $(enis) 7/ Gt the element the user clicked on
@ next(*.accordion-panel’) // s2lect fellowing nanel

® rot(sanmates’) 7/ 1t it s ot currently animating

© slideTala(s 77 Use s1ide togale Lo show or hide i

OEBPS/Images/p495-001.jpg
<ul class-"accord on”
aix
<buttor class:

2ccerd on-control '>Classics</batzer

=div closs=taccand on pone] SPane] conlenl goss here. .2/ divs
/11>
iz
<button ¢7ass="accerdion-contral '>The Flover Serles</autton
<div clzss="accordion-panel ‘-Panel contert goss here. ..</di
10>

<button ¢lass="accerdon-control ‘>Salt 0 the Seas/buttor>
“div class “accandinn panel Panel content goos hore...« /i
11>

L faczersin bt

OEBPS/Images/p495-002.jpg
css | Cttseceordion. v

sispl

OEBPS/Images/p151-004.jpg
=

| ESS THAN OR EQUAL TO

OEBPS/Images/p151-001.jpg
>

GREATER THAN

OEBPS/Images/p151-002.jpg
<

| ESS THAN

OEBPS/Images/p151-003.jpg
=

GREATER THAN OR EQUAL TO

OEBPS/Images/p585-002.jpg

OEBPS/Images/p496-001.jpg
Lgegn,

e s rs el g g e s
Pty oyt oS rrbrovs e eyt

sty s el e e ey
e e

OEBPS/Images/p585-001.jpg
CHTmi | crajposuite

scthox nte

anel for *oquipeat | yac®stypes,
<select 1d="equipnentTyae® name="equipnentTy)
<aption value-"chaose'-Plzase choose a types/option-
option usluc cameras/opllo)
~<ptian uzlue="prozectors'=projeciors/cpticn
<l b

<label for-'moce | “model</ b
<select 10="nocs1® nane="mode’

<aption-Pleass choose a type Firsts/option-
</selects

<inpus d='submit® type="susmiT* value="subit*

OEBPS/Images/p569-001.jpg
i

r
g

. 3

'm‘;mcoFfLL r

LAVOIXsunci: !

OEBPS/Images/p099-003.jpg
// Show size of the building plot
function showPlotSize(){
var width = 3

£ "+ (width * height):

var msg = showArea()

// Show size of the garden
function showGardenSize() {
var width = 12;
var height = 25;
return width * height:

}

var msg = showGardenSize():

OEBPS/Images/p285-002.jpg
BUY GROCERIES ©

freshfigs

ADDLISTITEM

OEBPS/Images/p099-001.jpg
var width = 15;
var height = 30;

var isHall = true;
var canPaint = true;

OEBPS/Images/p110-001.jpg
c3/js/object-constructor. js. JAVASCRIPT

var hotel = new Object()s

hotel.name = 'Park';

hotel.rooms = 120;

hotel .booked = 77;

hotel .checkAvailability = function() {
return this.rooms - this.booked;

s

var elName = document.getElementById(*hotelName');
elName. textContent = hotel.name;

var elRooms = document.getElementById("rooms');
elRooms. textContent = hotel .checkAvailability();

OEBPS/Images/p099-002.jpg
var width - 15; @
var height = 30;

var isWall = true;——
var canPaint = true;————

OEBPS/Images/p110-002.jpg

OEBPS/Images/p285-001.jpg
cosfjs mtation. s

var 11 isL, il ine, newFl, newTexl, courler, TistToms /7 Declare varfalles

ellist - cocument.gettlenentbyld(list') 7 et list
addl e = document querySeleclor('a’) s 77 €eL add {ew butlan
counter = sacument.detlenentByld{ ' counzer): /¢ Get ftem counter
function acdltem(e) | /i Declare function
_preventderault(/¢ Frevent Tink action
rewFl = documen . crealeFTomen| (11145 70 Kew <1i> clonent
neuText = documert.crzateTexthode("New 115t J/ New text node
neut 1 appandcn ¢ (nevlext); 7/ Add text to <li-
eTList.apencth 1 (nenE] §5 77 Add <> Lo Tist
“unction updateCount () { 7/ Daclare function
listitens - list.gettlenentstylaghane(*11'). lenqths // tat tatal of <Iiss

counter. inmerdTHL -

7¢ Undale counter

adeLink. adseventL“stener('cl1ck’, addltem, false) 4/ CHck on button
eIList.aadzventListaner ("D0Miodelnserted’, updazeCount, fzlse); /7 W upcated

OEBPS/Images/p358-001.jpg
oy 49

OEBPS/Images/p425-001.jpg
history.pushState(state, title, url);
Q) @

OEBPS/Images/p125-002.jpg
history

items:

screen

width:
hei

OEBPS/Images/p125-001.jpg
VASCRIPT cO3fsenindan-abiect.is

@Pay 7sg - "<hz=Dronser windsae/hZ~pouidth * = window.imeridth + < /p>

s = '<netgat: * o winda.imerkelaht | '</p's
se ~h?story</hz=<p~itens: ' + wirdow.nistan

@,{M = RALBET T s st
mse += '<prnerent: * - windod.screen.heicht + </o>':
Var al - docunent.gatt lamentHy Id('info)5

Of L et -

@ atert(‘Gurrant sage: '+ window,location);

Tength + *
th+ ejps

OEBPS/Images/p400-001.jpg

OEBPS/Images/p570-001.jpg
addEvent(el, event, callback);
® ®

OEBPS/Images/p295-001.jpg

OEBPS/Images/p481-001.jpg
Cos

cateiTinanly.s

vesponse - * {*deals": [{"titie"s "rarrow an Ball",... * // JSOK data
11 (resoonss) (
iryl
var dealbatz = JSON.parse (response) : 71Ty to parse JsON
shontortent (dealbatz) s 71 shaw JSON data
cateh()
var errortiessage = s.name + ¢+ emessage; // Create error msq
canso . Tog (rrortesage) 77 Shom dews sy

feed. TnerkTNL
tinatly {
var 1ok = documenL.createElewent (‘a); J/ Md refvesh Tink
TiTk. e TNL = © <a href="try-cateh-Tine]ly.homl "sreloase/ax" :
Ford. apnencih 16 (11nk};

Sorry, could not load ceals'</em; // Users msq

OEBPS/Images/p157-001.jpg
L OGICAL AND

OEBPS/Images/p481-002.jpg
Q Elemenis Metwork Sources Timeline Profiles Resources Audits |Comscle 3= £f 1O

© W oo fames v

SynzaxError Unexpeczed end of dnput

OEBPS/Images/p157-002.jpg
| OGICAL OR

OEBPS/Images/p157-003.jpg
[]
lOGICAL NOT

OEBPS/Images/p180-001.jpg
<atjenargle e [hrna

SIBUCIYPE html>
“him>
<hsad>
CtotlesRul [sayel Iutarings/tities
1Nk vel=tstylesheer” href="css/cod.css® />
</neac>
<banty>
<sectfon fd="page2
<h1=Bullseyes/h1>
<ing src-"inages,/teacher.png” ic-

<saction f3="blackboard ></s
<seripl sre=" js/on Jutsepserints
</a0dy>

</ntml>

OEBPS/Images/p415-001.jpg
I\ Modernizr

[Srr——

OEBPS/Images/p229-001.jpg
e

REGUESIS PAGES FROM COLLECTS INFORMATION STORES INEORMATION
AND SENDS FORM DATA FROM BROWSER AND CREATED BY WEBSITE
TO WEE SERVER PASSES IT TO DATABASE ADMINS AND USERS

BROWSER WEB SERVER DATABASE
PROCESSES HTML, CSS, ‘GENERATES PAGES USING RETURNS CONTENT NEEDED
AND JAVASCRIPT FILES DATA FROMDATABASEAND TO CREATE (VEB PAGES

SENT FROM WE R SERVER INSERTS IT INTO TEMPLATES

D ———

OEBPS/Images/pink-fill.jpg

OEBPS/Images/p611-002.jpg
| evaiTe funclion (1) (J{ Create susi T net
@ var valtd - [[91s8001~/ test(el valuchs 77 store resutt of test fn va
@ 1f (uatta) [{17 the salue of valtd s mot true
G witreisag|l] Titest- cvtersa VTS il 1) Sewserrormerags

)

@ return salid; 7/ Retun the valid variable

OEBPS/Images/p611-001.jpg
/[~6]+6[@]+/.test (el.value);
l_@_l l—®—l

OEBPS/Images/p353-001.jpg
s position.js

S(rmetion()
var Swingon = 3 (vindow) :

(D{ var §sTisehd = S(*#sTideAs’) s

@ var onlPone - ${* Flocter').oTfsel (). lop fuimiow. height () 5003

@ twincomon('scroll, function() {

@ if ((2ndZone) < Swindaa.scrol1Top() J [

® $uTtiohd.an mato(('rights ‘O], 2503
telse |
® $slicend. stop(truz).animate(] ‘right s "=360px’ 1, 240}

OEBPS/Images/p353-002.jpg

OEBPS/Images/p515-002.jpg

OEBPS/Images/p515-003.jpg

OEBPS/Images/p515-001.jpg

OEBPS/Images/p470-001.jpg
a

808) Dasrorasmen- o« (L)

Q Elements Nework Sources Timeline Prefiles Resources Audits |Consale

© ¥ <wopfames v
[

You enteres 3
You enterca 4

[

5 Javascrptbook.com/code/c10) consale-og html.

Find the area of a wall:

consale-log,jaild
consale-lag.js:
console-loa. 15:20

OEBPS/Images/p195-003.jpg

OEBPS/Images/p195-002.jpg
JAVASCRIPT <05/§s/get-element -by-id. js

// Select the element and store it in a variable.
var el = document.getElementById('one');

// Change the value of the class attribute.
el.className = 'cool';

OEBPS/Images/p195-001.jpg
HTM| c05/get-e1ement-by-id. htm

<h1 id="header">List King</hl>
<h2-Buy groceries</h2>

<11 1d="one" class="hot">fresh

figs</1i>

<Ti id="two" class="hot">pine nuts</1i>
“three" class="hot">honey</1i>
our"=balsamic vinegar</1i>

OEBPS/Images/p214-001.jpg
em-fresh</er= Tigs</Ti>

11 - attribute

toxt:
frash

The code below shows how you aczess te second text nodz. ltwillretum the result: Tigs

document .getElementById('one').tirstChild.nextSibling.nodeValue;

Q) Q) @) a)-

OEBPS/Images/p067-002.jpg
CUSTOM SIGNAGE

provieu: =

MONTAGUE+HOUSE

OEBPS/Images/p067-001.jpg
JAVASCRIPT <02/js/shorthand-variable. js

@ var price = 5
var quantity = 1
var total - price * quantity;

@ var price, quantity, total;
price
quantity = 14;
total = price * quantity;

@ var price = 5, guantity =
var total = price * quantity;

@ // Write total into the element with id of cost
var el = document.getElementByld('cost');
el.textContent = '§' + total;

OEBPS/Images/p055-001.jpg

OEBPS/Images/gray-bull.png

OEBPS/Images/p497-001.jpg
TAB1 TAB 1HIGHLIGHTED

CONTENT
CONTENT PANEL 1 PANEL 1
SHOWING

TAB 2 TAB 2 HIGHLIGHTED

CONTENT
CONTENT PANEL 2 PANEL 2
SHOWING

OEBPS/Images/p357-001.jpg
<IDOCTYPE htm1>
<html>
<head>
<title>Sample Page</title>
<link rel="stylesheet" href="sample.css" />
js/sample. js"></script>

<h1>Sample Page</hl>
<div id="page">Main content here...</div>
</body>
</html>

OEBPS/Images/p225-001.jpg
JAVASCRIPT s s sTiant s

document. e EenentsByTaghane(111315 /7 The sTement Lo romye

var containertl - removet|,sarenthiod element

/1 1ts containn

containerT1 .removeCild(remavel1) s /7 Reroving the slement

OEBPS/Images/p225-002.jpg

OEBPS/Images/p357-003.jpg
<IDOCTYPE htm1>
<html>
<head>
<title>Sample Page</title>
<link rel="stylesheet" href="sample.css" />
<head>

<body>
<h1>Sample Page</h1>
<div id="page">Main content here...</div>
i js/sample. js"></script>

OEBPS/Images/p454-001.jpg

OEBPS/Images/p225-003.jpg
Ti Ti Ti

® CONTAINER ELEMENT
7 EEET T EE e

OEBPS/Images/p357-002.jpg
<IDOCTYPE htm1>
<html>
<head>
<title>Sample Page</title>
<link rel="stylesheet" href="sample.css" />
<head>

<body>
<hl>Sample Page</h1>

OEBPS/Images/p268-001.jpg
o Gt <ul» alament for shopping list

+

Is
°c oL Do
o o

Usesttachbient(] Useaddlventlisszner(|

¥ +

Event: cTick on any link In fist
1

o FUNCTION: ftensora)
Removes an tem when complsted

Create varias)
@ orgesiheclement that wes licked on
B1Prant: the parent o that sloment
elGrandparent: the grandparent of It
i

@ | Getokemont ckked ons sl get arges()

o

@ Getits grandnarent tha <u1> stsmen
:;

@ Removeti> from <ut> stomens

+

o| @ <Engmumi. @
G [}

Usersturnialue preventDefault ()

FUNCTION: get Tz rgat ()
Gats olomant lser clicked cn

o LE. ©

of ovent old [E cvant object

OEBPS/Images/p582-001.jpg
How did you hear of us?
@ Search engine
[am——

© Other

OEBPS/Images/p411-001.jpg

OEBPS/Images/p582-002.jpg
e;

o

o

ooy
form: the form
options: all of the radio buttons
ther: only the otfer radlo button
GtherText! the other-text
Pide! wh store I other-1ext hidden of not

v
Set class of other-text to hide

LOOP THROUGH EACH RADIO BUTTON

Event: click on this radio element
1

INCTION: radioChanged ()
Shows/hicles the hidden text input

Is the other
? option checked? ?

Set hide varlable. Clear hide
tohide riable
Set class to value of hide variable

Is the hidden
? variable truthy? ?
N— |

Clear text Input

o e e Gl e

OEBPS/Images/p442-001.jpg
ZoomLeveL: 0 200M LEVEL: 4 [amn

OEBPS/Images/p442-002.jpg

OEBPS/Images/p329-001.jpg
o7t akjoct. s
S(rumet fon()

$C11on(ek function(e) {
@ SCT s’ move ()
@[var date = new Date():
D] data.setime(e.tinestans
G var cliked - date. tuDateSLring()s
S(tnis).append("' + clicked + ' ' + e.type + “</span')s

s

OEBPS/Images/p329-002.jpg

OEBPS/Images/p241-001.jpg
var |istizems - document.querySelectorall{ |

cosfis/exeepie. s

7/ A1 <li= elements

/¢ #DD & CLASS OF CODL T0 ALL LIST LTINS

/¢ Counter variable

for (1= 03 1 < 1'stitems.Tength; 111) 7/ Loon through elements
Histitans[i].class¥ane - ‘<00’ 71 thange class to cool

¢ ADL NUBER OF LIENS 1N HE LIS 10 IHe HEADING

var heading = o
var headingText
var tatalitoms
var newdeacing

el uerySel cLor (275 /42 clement
Pzading. FirstChi1d.nodevalus 71 vz text

it roms. Iongths 74 Yo ot <1ix clemnnts
hzadingText | *<spam>' | Totalltens 1 ‘'s // Content

hezding. textCartent ~ neatieadings 11 Upsate 2

OEBPS/Images/p469-001.jpg
LX) JaveSeript & JQuery - Chapter 10: Error Handling & Dcbugging
s ey -t

(1) * swaoncom e cio s a1 cooe

Find the area of a wall:

o width

> Console

< esath = 3
3
neioht
B
area = width = heighty
1

OEBPS/Images/p381-002.jpg
confsestatao s

var xhr - raw KHLHEtpRequest () s 7/ Create ¥MLEttpkequest ooject
xhr.onload = function() | // When response has loaded
7/ Ine ol lowing conditionz| check wi 1 not work locally - only on a server
Af {xhr.status === 200) | 4 Tf server status was ok

£/ THTS PART TS DTEFFRENT RFCAUSF 1T 1S PROCFSSTNG XM NOT HTMI
var resaonse = xhr.respansexiL; // et ML from the server
var events - resporse.gstt smentsbylsghame *event'}; // Find <event- =lements

for {var 1 = 03 1 < events.lengzh: 111 J/ Loop threuah then
var container. image. location, city. nedlins; /¢ Declare variatles
Container = dicunenLc el eF o (1) 7f Creale <iv> conliner
contafner. classhame = *event’; /¢ g4 class attribute
fwage = e e oF omen (*Tng') 74N wap Tmge

image. sezaterioute('src'. cetliodeValue(svents[i], 'msp')):
image. 2ppendChi Id(document. creste extrioce (getfiocsValus(events[1], 'zn’}))i
contatner. sppendch i1 fmagz) ;.

Vucalion = dacmen.crisles leenl () 74 2 togal fan gata
city = documert. crzateZlensnt (b’

newline - document .creteElenent {'br');
Cily-anpendChili{dacument.crealeTextlode (getNodvfaluc{esents L], Tacation'})

Tocattan.aspendChi1d(nen’ ine) ;
location, insertbetare(city, newline
Tucalion. aspendChiTd{docurent . crealeTexNods (gelNodeUalus (svents| i, 'date’ 1)) 5
container. sppendCrild{Tocation) s

docunent.g21E1 2nertByl (' cantent ') . appendChid(conzatner);

wnel o guitadeValu{eh], tag) | 74 Gets conlent fron 001
returT ob.getElementsSyTaoNane (tag) [0] .+ rstchild.nodevue

/7 THE FINAL PART IS THE SAME AS THE HTHL EXAMPLE BUT IT REQUESTS AN XML FILE
¥

xhe.open('GET' . 'data/ezta. '
hr.send(nul 1)

true): J/ Prepare the vequest
7/ send the request

OEBPS/Images/p253-001.jpg
et ion checklsermoe]) | /4 Dectane funcLior
VT else = cocument. cetC]enentDyld(feed 7/ Get feednack element
if (tnis.vaiue. Tength < 5) { 7/ 17 username too short
Clbag. LexlContonl = “Uscrmane mst b 6 craraclers o wore's j/ Sel my
) eise // Otherutse
elhsg, taxtiantent - 7/ Clear message

(D) var elUsernzme = docunent.qetElenenzByTd('usernane }; /7 Get usernane fnput
@ ellsernzme.onblur - checkUsernare; // When it loses focus cal| checkuserName()

OEBPS/Images/p156-001.jpg
Do expression 1and expression 2 both evaluate to true?
false

EXPRESSION 3

(5 < 2) 88 (2 > 3))

! LOGICAL
EXPRESSION1 optmaToR EXPRESSION 2
Isfive less than two? Is two greater than or equal to three?

e e

OEBPS/Images/p199-001.jpg
var elements = document.getElementsByClassName('hot');
if (elements.length >= 1) {
var firstItem = elements[0];

1

OEBPS/Images/p414-001.jpg
s
navigator.geolocation
supported?

Run statements that do Run statements that
not use geolocation use geolocation

OEBPS/Images/p296-001.jpg
Fopiieb e oo ddoe ot et B e LE

$('1i.hot")
I—'—l

SELECTOR

OEBPS/Images/p457-001.jpg
var greeting = (function() {
var d = new Date();
var time = d.getHours();
var greeting = greetUser();

function greetUser() {
if (time < 12) {
var msg = 'Good morning '3
} else {
var msg = ‘Welcome '3

}
return = msg + gethame();

function getName() {
var name = 'Molly';
return name;

}

N3
alert(greeting);

OEBPS/Images/p482-001.jpg

OEBPS/Images/p369-001.jpg

OEBPS/Images/p555-001.jpg
<()

OEBPS/Images/p512-001.jpg
e 6 0 06

© 6 0

Event: clic< on thumonall

+

Sinulata user clicking on first thurmbrall

ANGNYMOUS FUNCTION

Groato vaniabios: $in7: to load wnage, <
path (o Imags, ~uas U path to latest imags
Prevent defauit action o Ik
i
Updiato active thumbnai

+

s s imae
Q Ik @
—

? Piptiesd L4

Call tanction: crossade()

Create <ing> element & store In $ing
!
Undate cache & sot faLoading ta tru

*

Event: 1cad on new image

+

Add 13 |oxdirg elass to frame.
i
Update sre &1t of mage

ANGNYMOUS FUNCTION
Hide Image
i
Romovo ‘loading' & add Image.
!
Undate sscho & <ot fsLoacing to “also

+

¢ mage st
0 daiEie

Callfunction: <o fads()

OEBPS/Images/p555-003.jpg
>()

OEBPS/Images/p083-001.jpg
ctefisfexsmie. s
// treate varianles for the nelcone message
Var yrecting - “Homdy s

var name = "Nolly
var message - ', plaase check yaur order:’;
7/ Concatenate the three varfables above to creats the welcoms nessage

Var welcors = creeting + name - messige;

47 Breate variales Lo hold delails dboul Lhe sign
var sten = "Nortagus House's

var tiles - sign. length;

var subTolal = Liles * 3y

var shiopirg
var grandlotal - sualotzl + shigping

/¢ Get the element that has an id of gresting

var el = dozwent. gL Flonent ByTd(greeling)3

/¢ Peplace the content of Tnat element with the personalized welcome message
el.textiontent - welcons;

/¢ Get the element that has an 1d of userSign then update 1ts contents
var elsign - docunent,gstt Ismentiyld(‘usersign)
elSiyn. textContent = 5o

/7 et the alemant that has an i of tiles Shan updats 115 contents
var elTiles = cocument .netElementByld(<iles');
elTiles. textCortent = tiless

/¢ Get the element that has an fd of subTotal then update f7s contents
var elsublotal - docunent.gstt|ementby.d('sublozal
©lSubToLal . Lext Conlenl = 'S* + subTula

/¢ et the 2lement that has an id of shipping then update its contents
Var clsubletal document.gatt lcmenthy d('shiopirg')s
elsublotal . textContant = 'S* | shipping;

/7 el the slensal Lhal s an G of grandTata Uien updales iLs contents
var elCranTotal = document.getElementBy[d(' grancTocal ')
elbranciozal . textContert - '3’ + grandiota ;

OEBPS/Images/p555-002.jpg

OEBPS/Images/p598-001.jpg

OEBPS/Images/p326-001.jpg
—(00—
$('1i').on('click', function() {

$(this).addClass('conplete’); %}
s

OEBPS/Images/p299-003.jpg
cooL
‘COMPLETE

OEBPS/Images/p140-001.jpg

OEBPS/Images/p299-001.jpg
s fuasecenayianis
ader®). audCass{headl inet)

16(3)") .hide() . fageIn(1500)

“Hit).on(*ciick’, function() [

s(tnis).remove();

OEBPS/Images/p299-002.jpg
balsamic vinegar

OEBPS/Images/p128-001.jpg
var saying

‘Home saeet home Home sweet home

OEBPS/Images/p429-001.jpg
ThemeRoller

OEBPS/Images/p256-001.jpg
Evenlname
The nzmed fuction
includes parentheses
cantaining the
paramezer after the
funchiar. namr.

checkilsername (5) ;
), false);
|
End cfstate ment
End of addEvent istanen() me:
Event low Boolzan (s p250)
End i sprvmous tunchion

P

o1.addFuontl istoner (*hlur', funetinn() |

Stat ptampyrios ot

Ths anonymous
furction is used
as the sezand
argment. It Wracs
arsnd” trenemed

OEBPS/Images/p213-002.jpg
<l

id="one">six fresh figs</11>
1i — attribute
em text:
1 figs
text:

OEBPS/Images/p213-001.jpg
one">fresh figs</11>
1i — attribute

text:
figs

OEBPS/Images/p354-001.jpg

OEBPS/Images/p311-002.jpg

OEBPS/Images/p397-001.jpg
1PT 0813/ 4-0uL50 5
@ S(bexcnangaratas ') append{*<diy 1d-"rates"o</divoediv 16-"reloag"</civ>");

@ rurction TozdRates() |
@ S.getIsON(*datafrites. json)

(9 .done(functionfcztal{ // SERVER, RETURNS DATA
var d = new Dat(); 4/ Create date object
var hrs = gotours () 77 et hors
var mirs = d.getMnutes(): J/ et mins
var msg - ‘<hz=txchange Katess/hz> /] Start message
S.esch(dala, lunction(key, val) | 7/ Add eath rate

msg += '<div class="' + key + '+ key + ' '+ yz] ¢ le/dive!
)
msq 1= '<brslast updates ' 1 hrs | ':' 1 mins | '<brs'; // Show update time
S(*tratas) htmi (nsc) s /7 3t rates to page
® ¢ fncLion() | 7/ THERF 15 1N FRAOR
sice'] append(SorTy. we camnot Toad rates.')s // Snow error message

@ 1).always(function() | /1 ALARYS RUNS
Var Teloac = '<a d="rafresh® hret='£ 1 7/ Aad vefresh Mok
reloac m3,/refresh.pnc® al e iax
S Erc o) L (o) 77 N reresh Tink
$(#refresn'.on{ 'clck’, funcztone) | /i Ad clck nangler

2.praverthetaul t(); i/ stop. Tink

Ioaciates (7f Gall loadkates()
Hs
N

@ loatkatas()s i/ tall loadkates ()

OEBPS/Images/p612-001.jpg
- L]

anysingle
character (except
newiine)

T

subexpressions precading element
(sometimes called zeroor more times

LS

group
whitespace

\D

single character

non-digit character

)

ot cont;
within bracksts

\n

nth marked
subexpression
(s digit1-9)

A5

anything but
whitespace

"~

the starting
position in any line

{m,n}

precading element
atleastm,but o
more than , times.

\w

alphanumeric
character
(AZ 8-z 0-9)

>

the ending positior
inany line

\d

digit

\W

nom-alphanumeric
character
ikl S

OEBPS/Images/p341-002.jpg
balsamic vinegar

OEBPS/Images/p341-001.jpg
€05 i ansors. s

(z)).removeCTass("hy
1q{0) adiCTas s conpe
5(2)) -adecTass(coot

OEBPS/Images/p098-001.jpg
function getArea(width, height)
var area = width * height;
return area;

var wallSize = getArea(3, 2.
document.write (wallSize);

@ LOCAL (OR FUNCTION-LEVEL) SCOPE
Ot

OEBPS/Images/p311-001.jpg
JAVASCRIPT s feining. s

(11 [1d1="one]*

nide() .delay(500) . TadeIn(1400) 5

OEBPS/Images/p283-001.jpg
<Osjuitom.js

var elFam, ©1SeTecPackige, elPackageHinl, oTemms; 7 Dclare viriables

el - cocunent .getElementBylc(fomStanup*): // Stove lements

elselectPackage = cocunent . getClementbyle(packace

elvackagefiint - cocunent.gete|enentBylo(packageHint');

elTemms cocunent .etElementByle(tems');

elTerms it docunent .getClementoyIo(cemsiiinc');

“unction packagehert() | J/ Teclare function
var package - this,options[this.selectedincex] valuzs // et selected option
iF (package - ‘monthly') | 74 10 wonthly par kage

elFackagellint. innerlITML = 'Save $10 1 you pay Tor L yearl's//Show this nsg
}else [¢/ Utherwise

elrackaneHint fanerHTML = ‘Nse chofce!'s i/ Show this message
i

“unction chackTamms (event) { 4/ Declare function
i (LT e checked) | 7710 checkbon Lickes

elTenmsint. InneTHL = 'You must agvee to The Tems.': // Show nessace
event.preventlefault(); 4/ Uon't submit form

//Create evant Tsteners: submi calls checkTams(], channe cz11s pacageHtnt()
e17omm. sddCventListener(‘sumit, checkTems, “alsels

STed Package adiFyen L] stoner(change’, packageHing, s

OEBPS/Images/p240-001.jpg
<sfisjeramle. fs JAVASCRIP T

£/ BUDING LIEMS 10 SIAR| &MD LMD OF LIS
Gar 115t = cocunent..oetElenentsByTaghane (" ')[01; /7 Get the element

/20D NFW TR T0 FD OF 11ST
var newlten_ast = docunent.createtlement('1:' J/ Create element

var newlaxtLast - document . createlaxzhode("cream'); // Lreate text node
newltenLzst. sppendchi1d{newTextLast | ; 7 Adctext noce to elemenc
MSt.appzndCnt d(neul tenlast); J¢ 4de slement =nd of 115t

/4 DD NFW TTFM START OF | TST

var newltenirst = document..createClemsnt(‘11%): /7 Create elenent

var aewloxtrivst document.ercate lextNode (Kl Ereate toxt. nade

nenltenFirst. appendChi]d(newTextFIrsz) J¢ dc text node ta elenent
Vist.insartbetora(newltent irst, |ist.firstChild); // Add element to list

OEBPS/Images/p097-001.jpg

OEBPS/Images/p356-001.jpg
LOADED

@ NOT YET
LOADED

OEBPS/Images/p613-001.jpg
/o\d+%/

number

A \sT+

whitespace at start of Ine

/[rel+e[~e]+/

/~#[a-fA-F0-91{6}$/

hex color value

PU#S%8\ " () *+,-. /@:5<=>[\\]* “{[}~

hex color value

/~O\d{21\/\d{2]\/\d{4}) | (\d {4} -\d{2}-\d{2})$/

i it

OEBPS/Images/p427-001.jpg
wosjihstory. s

S(funel ion () /7 00 s Vot
‘fanction loacContent {ur1){ 7/ Lozt ned content Tnto page
@] S(icartont').1ond (el + ' Jcontatner'] hide().faein(‘sia’)5
'
@ $Cnav a).an(click, functionie) { /7 Grick nandler
e.preventhefault(}; 77 Stop 1ink Toacing rew page
@ var href = thistwers 77 Get href attriute of Tink
var $U0is - ${10is)3 7/ Slore Tink in jQuery object
@[SUa)-revoveClass{"currenct): // Remove current’ fram Tinks
DL strisatiass(Ceureant') s 47 Upsare current 1
(5 TleadContent (href) // €all function: Toacs content
© history.puststate s Sthis.text, hrefl; // Upgate history
s
@ window.arnopstate - “uncrion) 4/ Handle back/taraard buttons
@ var patn = locatton.pattnane; 77 Get the Ti1e path
® Tastantent (patn); /¢ Gan function to Toad page
var e = palh s L ecation. e, s e (7] + 1)5
@{ 5('s').rercveClzss{'current'): // Remave current from Tinks
SCIhret-=" + page + **]°) atdClass ("eurvans"); // lpdate currant lind

OEBPS/Images/p427-002.jpg
RESULT
18T 2ND 3RD
First prize s the DJl Phantom - a small, all-n one

‘quadcopter designed for aerial photography enthusiasts. I
ready to fy.

tylsh,

carry wherever you go, ready at a moment's notice.

OEBPS/Images/p399-001.jpg
1P T 8 Js/ja-ajen. s

@ S(nav 2').oniclick’, function(e) {

eopreventdelault()s

var url = this.hret /7 VAL to Toad
var $eontont S(*lcentent’]; 7/ Cache selection
$('nav a.current*) vemoveCiass(‘ current']; /7 Update Tinks
F(UE) i€l Ccurren 1) 5

nert).ramove(): // Remove content

/] GET or pOST
77 patn o T
@ : uatting time

befaresend: functien() { 77 Before &iax
@{ emtent o ', Tl g1 s

comlete: function() { /i Unce tinished
§('#10ading’). remove(); // Clear message

Successe funclion(data) | £/ Shiow content
contant.ntnl (${data).Tind{ sconzainer')).hidz().fadeln(d00);

Tail: function() | /7 St crror g
§('4pznel ") .hem [*<dfy class="loading">Pease try anain socn.</civ>');

OEBPS/Images/p127-001.jpg
VASCRIPT 09 dscummi-object s

|:vav g

“epreawpage titles </b' + document.title + ‘<br /o';
tebpsage adiresss /0" 1 docurenL URL | t<br g’
*last moified: ' + docunent.lastiodiTied + '

mse

var el = docurent .etElementByld(' “coter');

OEBPS/Images/p313-001.jpg
THE load EVENT
jQuery had a .Toad () method, It
fired on the Toad evert, but has
been replaced by the _an().
As you saw on p272, the Toad
event fires afler the page and all
ofits resources (images, €SS,
and scripts) have Ioacisd.

vs
You should use this when your
script reles on assels Lo have
loaded, e.g, it neds to know
the dimensions of an image.

Htworks n sll browsers, and alsa
provides function-level scope
for the variables t contains.

THE . ready() METHOD
JQuery's ready () mthod
checks it he browser supparts
the DOHContant Laaded event,
because tfres s soon as the
DOM has aded it does ot
waltfor ther assets o inish
Ioading) snd can make the page
appear asif i loading facter.

1100 ContantLosded is
supported, [Query createsan
event listener that responds o
that event, But the cvent 15 only.
supported in modern browsers,
Inolcer browsers, Query il
wait for the Toad aventto fire.

Vs

PLACING SCRIPTS BEFORE
THE CLOSING </Body> TAG
When you place your seript at
the end of the page (hefore the
closing </body>tag), the HTML
will have loaded info the DOM
before the scriptruns.

Vou wil, howeverstill seo
peopla using the .raady()
method because scripts thal
use t willstill work if someane
moves the script tag elsewhere
Inthe HTML page. (Thisls
particularly common when that.
script s being mads available
for other people to use.)

OEBPS/Images/p127-002.jpg
-
page title: TravelWorthy

last modified: 03/10/2014 144623

OEBPS/Images/p313-002.jpg
SERERITRI SN R LAV DA B A
ON DOCUMENT OBJECT

l—l—|
$ (function() {

// Your script goes here

1),

OEBPS/Images/p328-001.jpg
$('1i').on("click' function(e) {

eventType = e.type:
D

OEBPS/Images/p498-001.jpg
o Select all sets of tabs on page

+

LOOP THROUGH EACH SET OF TABS

ANONYMOUS FUNCTION:
Setup this group of tabs

Croate varlables:

Sthis: current list

©| stab: curently actie tab

$1ink: link element in active tab

$panel: value of href attribute on link
¥

Y svent: click on tab control

ANONYMOUS FUNCTION
Show this tab and hide others

4] Prevent default action of link
|
Create variable:
e $1ink JQuery object contalning link
o 1d: velue of href attribute from tab
4| | userust clicked

+

of| @ rmu - @
%

Remove active from class on tab
o 1
Remove active from class on panel
1
Sat tab user ciickad on as active
5} 1
Set corresponding panel as active

+

i
Update $pane1 & $:ab variables

Q I IR S |

OEBPS/Images/p382-001.jpg
<efdatafiata. i AVASCRIPT

¢

sventsts [
{ *location’s "San brancisco. CA". "date"
[“location®s *Austin, TX", "darors "May 15", ‘wan*s *tag/m
{ *location"s "Nlew York, H¥', “date": "Way 3, g mpny-ana b
1
)

OEBPS/Images/p583-002.jpg
@ (tunction()}{

®
©
@

var for, opLions, olhier, stherText, hide;
fom = cocument.oetClenentByld(hou-heard');
opricns farm.slonents. heard;

other = cocumnt.getElenentByld(other');

otherText - cocument.cetElenentByld(other-text
utherText st = 'hid

for (var 1 - []: 1 < options. length; i+=) {
adeEvent (options |1 [, 'click’, raioChanged];

}

function radioChangec() |
hics - other.chacked 7 ** : “hide
olberTonL TussNane = hidles
if (hics) (
otherlext.value -

a3/ dsfshin-apLion. s

7/ Declare variables
7/ et the form

it the radia buttons
7/ other vadic utton
r text input
7 Al alber Lex inpul

// Loeo through racios
7/ hdd event Tstener

7/ Is other checkes
77 Text fnpal vis 0110y
7/ Tf text input hidden
/1 tpty its contents

OEBPS/Images/p583-001.jpg
CHTmL | ex3/shor-cption el

<torn id-"han-heare" action

* /heard” method-"sost" >
<INpUE Tyoe="radic” rame="heard® value="search’ 1ds'search’ />
“lahel for-*saarcn’sSaarch enginer /|ahel = brs

<input <yse=‘radio® name='heard® valu
Salil Tor="print >Hewspage

priatt id=tzrint'
or wagasines/1ibel

“input Syse-‘radio® name-'heard” value-
<label for-gther -Otner</label =

<Anput text! ‘other-tnput® 1

her® id-"ather” />

‘cther-text” />

it fi="si L vl

<o

OEBPS/Images/p198-001.jpg
var elements = document.getElementsByClassName('hot")
if (elements.length >= 1) {
var firstItem = elements.item(0);

1

OEBPS/Images/p540-001.jpg
L . | e R LRl 7 o

OEBPS/Images/p112-001.jpg
c3/js/adding-and-removing-properties. js

var hotel = {
name : 'Park’,
rooms : 120,

booked : 77

hotel.gym = true;
hotel.pool = false;
delete hotel.booked;

var elName
elName.textContent = hotel.name;

JAVASCRIPT

document .getE1ementById('hotelName') ;

var elPool = document.getElementById('pool');

elPool.className = 'Pool:

var elGym =
elGym.classhame =

'+ hotel.pool;

document.getElementByTd('gym');
‘Gym: '+ hotel.gym;

OEBPS/Images/p112-002.jpg

OEBPS/Images/p155-001.jpg
0 s s son-arat

var seorel = 905 /7 Rownl 1 score
var scorez = 9 7/ Round 2 score

var hienscorel - 75; // Rownd L figh score
var higitSeore? = 983 1/ Rounl 7 high scure

/¢ Gheck it scores zre nigher than current high scores
Var camsarison - (storel = score2) > (highScorel + hi

HScare2)s

S el e message nlo L page
var el = docurent.qetElementByld(' answer);
el.textiontant - ‘New high score: ' + comparison;

OEBPS/Images/p155-002.jpg
New high score: true

OEBPS/Images/p327-001.jpg
1T

S{uncLion()
var ids =
@ var SisiTums - 50710

§TistItems.on('mousecver click!. funczion() {

ids = Inis. il

SHistitens.cheTdven('span') .remove ()
S(tnis).append(* <soan class-"priority™ = ids + ‘«/span=");
bi

S0 Tem oo mseont ', funeUon) |
@{ S(tnts).chtldren('soan ') .remove():
0

OEBPS/Images/p327-002.jpg

OEBPS/Images/p082-001.jpg
corfexeepl.

SIBUCIYPE html>

“himl>
<hsad>
“t-tle-JzvaSoript amp; juuery - Cnapter
Exampla</ti1e
1ok rel=tstylesheet! href='css/cZ.css® =
<bony>

hiElderflovers/nis
<7 1d-"content’>
div id-tgreeling® class
<tablex
<trs
<td>Custom sign: </td>
<td 1d="userSign"></td>

P
<
<td-lotal tiles: </td>
PERISITEeII
<tre
“trs

<LSuitolel: </l
<td Td=" subTotal "=$/1>
e
<
<tdShipping: </td-
<1 =" shipp ing®$e/Lds
<ftr>
<tre
< lsGrand [alals /1
<td 1d="grandTotal H</1d
i
“/tabla

faiv
“scripl sretjs o
</a0dy>
</ntm>

e jamse s it

+ Basic avascript Instruct-ons -

OEBPS/Images/p255-001.jpg
<08/ svent 1 st s

wnetion checklsernamel) | /4 Dectane funcLior
VT else = cocument.getC]enentDyld(feed 71 Get feednack element
if (tnis.value, Tength < 5) { 77 1% username too short
elbug. LexlCantonl = “lscrmane must b & Characlers o moee's /7 Sel sy
0
) else [
cltg. toxtiontent *'5
i

@ var ellsernzme = document. getCemenzhy d(username
/7 e i Toses, Tocas callche ksernane ()
elUsernzne. addzventListenen("blur' . checisemane, false

o) @ @

/¢ Get usernane input

OEBPS/Images/p026-001.jpg

OEBPS/Images/p298-001.jpg
o]

o

sorjpeste exenpie. et

<nody>
<ty 1

pwen

<hL 1d="header">List</hl>
<h2oBuy graceries</l2n

uls

<1t

i

1

<1

<ful>
<ty

aseripl

script

</bady>

fd="ane’ class="hot ‘><em=fresh</em-
"L Tass="lol pine muls</1ix
id="three" clzss="hot*>honey=/11>
14" four*>balsantc yinegar</11>

Sret gy 1110/ rints

I5/bas c-examplz. Js script

Fos</1t

OEBPS/Images/p513-001.jpg
@ $(torurent).on{click,

~thumh’, sunction(s)

st sionsr.

J/ When a thumh i clicked on

var Sin J/ Create ocal variable called $ing
@ var s = thiseer 7/ Stove path to tnage
reqest - sres 77 Stare palh ogain in vequest
@ e.preventberauiti)s J/ Stop default 11k behavior
@ ot Cacte)y 7/ Werewe active fram 11 thmbs
_ 3ithis).addiass{ active’)s 7/ Add active to clicked thum
AT (eache st Property (sre)) | 77 10 cache contains s wage
& ' (carmelsrc] ssioading —-- faisa) [7/ A 1¢ Ssloxting is 7aise
crosstate(cachesrc . $img) s 7/ G211 erosstate() function
i ks 1/ tterstss 1t 15 ma o cache
® g = s(<imgle 7/ Store erpty <ingj> lemert in $ing
cachelsrel = { 7/ Store this tnage tn cache
G Siwtm, 74 00 e it e g
4 isLoading: trus /f et isLoating property 1o true
4/ Next Tou 1ines will Tun whon fmage his laaded hut ara propanad First
® $irg.on('Toad', function() { /{ Wnen image has Toadad
® stng.hide(’ 77 Fde 1t
£ Resove 1S Toading class from frame & cppend e fnage Lo it
] Strame.remoyaClass {15 aading') .apnerd (1-ng)
® cachelsrc] . isLoating = Tals // Undate isLoading in cache
/7 T StIT] nost recent]y raquestec Tmags then
R
@ crassfade(3ng): /€11 crossTate() function
. 7/ so7ves asynchronaus Toading ‘ssue
n:
@ §freme.addClass("1s-Toading')s /4 hdd is-oading class to frame
T fimattei] 77 SeL altribules on <ing <Tenent
& torets s, 7/ d sre_ attrinite o loar imge
‘a1t thistitie (| 7/ 434 title 17 ane was given in Tink
BB

ll
n

/¢ Last Tine rurs once (when Test of scriot

@ 30" thumb') (D). ek ()3

Toaded) to shon the *irst fmage
SinuTale click on Tirst Lhunbrail

OEBPS/Images/p197-001.jpg
getElementsByTagName("h1')
T INDEX NUMGER S ELENENT
recums cne dlemer tzmethed 0 <1

il et = Nodel <t becaise

eftre potentlal for returring

getElementsByTagName ('11")
s method retuens four INDEX NUMBER S ELENENT

Flements. ane for each of 0 1 faronst case

<1+ zloments on e page. G et cia
Theyanpear = tne same ordar
a5 they do inthe HTWL page.

getElementsByClassName (' hot ')

This NedeList contains only INDEX NUMGER 8 ELEMERT
torez of the </ 1> elements o 11 famone crass
because we are sezrehing for TG

elements oy the valuz of their A St hren ase hates
7 ass attibute, novag name.

queryselectorAll (*14 [1d] ")
This method returns Four INBERNURAEE S ELEET
clemerts ane foreachof e v i g cis

Qi merisonthepogetiat 3 CH

Fave an 1 it argareless
Seiavalise ot e i

=i

OEBPS/Images/p599-001.jpg
HTML xatidation hte)

<torn method-"post’ action-" /register®>
< ol 1>
<div class="rame®

“lasel for-"nams class-"requred"-Rames</ abs >
<InouT type="text® nlaceholder="Enter vour name® name="name* i
requires title="lease enter your name’
“fivn
<dfy class=temacl'>
<lael for="enai]® class="required®Cmails</1zbel
<int Lype="emsi1® placoholider=' youezams e, con® name=oma (11 (=" onai1®
requiress
<div

e
<lasel for="passworc class="requivec”>Fasswort: </1abs1>

<irout type="password® names'passuors® ic="passucrd* requirecs
/>
«dfy class="passvord®s
“lasel for-"conf-password” class-"required =Contirm passwords</lanel>
it Lype="passwcrl® rme="con passward® fd=ton sswrd® vegiveds
<ty
<1—- Coluan 2
iy class=birtlday'>

<lasel for="b:rthday" class="requivec">Birthaay:</1abe1=

CinaIT type-"date® name-"birthday” Te-"hirthezy" alacshalder-"yyyy-m-dd®
requirecs
<div ic="consent-container class="hide"
e et consent®> You need 4 parenl s perisson Lo Join,

Thek here 11 your cn1ld can fotnz</ael>
<input tyoe-‘checkbox" mame-“parents-consent® id-"parents-consent

<fiiv
</div-
<div class-"bio®>

<lebel for="b '>Shorl Bio (nax 140 characters):</lab=1>
<textarza nzme="bic' extarzas
Span 14 *hin countt class “hide Tt
</di>
<div class:
</ Forne

<fapans

SUDMI L TnpuE. Type="submit*></41v>

OEBPS/Images/p383-001.jpg
Oulfda o

o

@

var hr ~ raw KHLHttpRequest(): 7/ Greate NMLHttpsequest object

xhr.ontoad = function() | 7/ When readystate changes
(s aus ~—= 200) | 7711 serer <Lalus was ox
respense0aiect = JSOK. parse{xnr. vesponseText];
/7 BUIID (P STRING UTTH NFA CONTENT (cond 4Ts use DOH wanipul icn)
var reContert = '
for (var 1 - 03 1 < responsebbject.everts. langtn; i++) {//Loop through cbject
newContent 1= <div Class=tevent'> ;
newContent += ‘<ing src="' + responseObject.events[il.map + '
nenGonicnl <= *1= < responsebjor Lesen || Tocaion +
neContant 1= <<’ 1 rasponseDbject. events[i].Tocatien | *</bsebrs s
newiontant +- rasponsedasect.events[i] date + </
wnontent += *</div>'s
)
// Uptae the pans with the neq content
Cocumen. getE1enentByL4{ content), TnnerHTHL - newConzent:
)
xhr.open('CET', 'data/eata. json’, truel; /1 Prepare the request

hroserd(null) /f send the request

OEBPS/Images/p556-001.jpg
Q
! |
donrtmove don'tmove
a should go before b a should go after b a should go after b

1-2 = 2
<0

Ay

OEBPS/Images/p212-001.jpg
Tigs:

attribute

OEBPS/Images/p483-001.jpg
a0t s

var width = 173 /4 width variaile
vor heidh = Lest's 17 ML variable
wncLion ilculsledrsa il height)
oy [
var arez - widtn * negnt; /i Iry to calculate area
i (st Goren) | 76100 s g nber
raturn arza; 77 Reurn the arez
else | // Utherwise throw an error
Tavow new Eveor{ el culatesvea() recefuad fnvalld nunber)
) cath(v) 1 therc s an srvor
corsole.Tog(e.nzne 1 ' ' 1 e.message): 7/ Shon error 1n console
veturn e were unazle to calculate the area.’s // Shom users 3 nessage

'

/¢ TRY TO SHOK THE SREA ON THE PAGE
documert.gett iementsyle(‘ar=a’] innerH L - calculateAvea(uictn, neight);

